

Detection of prebiotic molecules in UV-photoprocessed interstellar ice analogs

Guillermo M. Muñoz Caro, Willem A. Schutte, J. Mayo Greenberg

Sackler Laboratory for Astrophysics

Leiden Observatory

The Netherlands

Outline

- Dense Interstellar Medium
- Caboratory simulations
- Effect of UV irradiation on IS ice analogs
- Products of UV-irradiated interstellar ice analogs
- Implications for astrobiology

Dense Clouds

- Gas phase molecules and dust particles with ice mantles
- © Complex chemistry on grain mantles at $T \ge 10$ K due to:
 - Surface chemistry
 - UV and ion irradiation
- Star formation

Laboratory simulations

- $^{\circ}$ High vacuum system ($\sim 10^{-7}$ mbar)
- $\ensuremath{\text{6}}$ Cold finger cooled to $\sim 12\ \ensuremath{\text{K}}$
- Deposition system allows slow condensation of mixtures of gases on the cold finger
- Mixture of ices is irradiated with UV lamp
- Analysis techniques involve IR spectroscopy, GC, LC, MS

Effects of UV irradiation

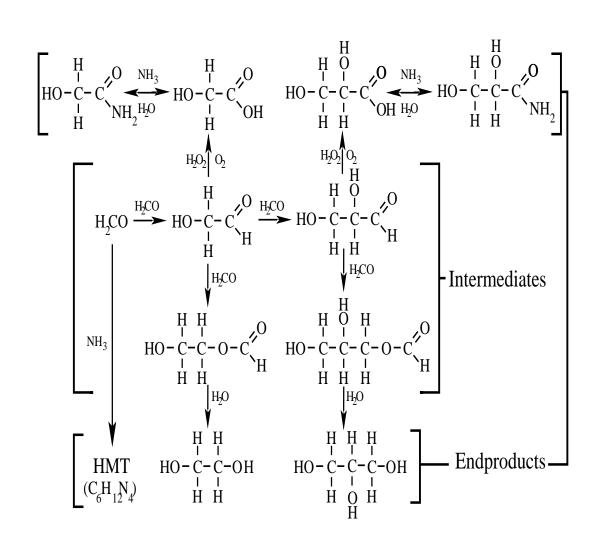
Photoprocessing of interstellar ice analogs (typically H₂O, NH₃, CH₃OH, CO and CO₂) produces a refractory organic residue ("yellow stuff")

⇒Process could be similar to what occurs in dense medium

UV products of IS ice analogs (1)

Dense cloud organic refractory

("yellow stuff")


- Thermal reactions of formaldehyde (H₂CO) with itself and other ices take place above 40 to 80 K. Products so obtained are polyoxymethylene (POM), by polymerization, and some POM derivatives when formaldehyde is mixed with H₂O, CH₃OH, CO and NH₃
 - ⇒Schutte et al. 1993

UV products of IS ice analogs (2)

- \bigcirc GC-MS analysis of photolysed CO:NH $_3$:H $_2$ O mixtures:
 - glycolic acid (HOCH₂CO₂H)
 - glyceric acid (HOCH₂CH(OH)CO₂H)
 - glycerol (HOCH₂CH(OH)CH₂OH)
 - glyceramide (HOCH₂CH(OH)CONH₂)
 - hydroxyacetamide (HOCH₂CONH₂)
 - oxamide (NH₂COCONH₂)
 - urea/biuret (NH₂CONH₂/NH₂CONHCONH₂)
 - ethylene glycol (HOCH₂CH₂OH)
 - glycine (NH₂CH₂COOH)
 - Carboxylic acid salts, such as (HOCH₂COO⁻)(NH₄⁺)
- ⇒Agarwal et al. 1985, Muñoz Caro et al. 2001

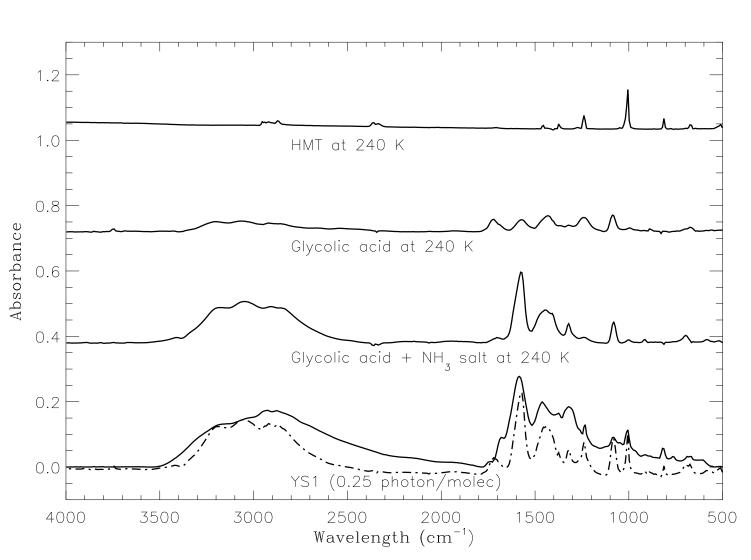
Formation of carboxylic acids and alcohols

UV products of IS ice analogs (3)

- Photolyzed H₂O:NH₃:CO:CO₂:CH₃OH mixture:
 - Hexamethylenetetramine or HMT (C₆H₁₂N₄). HMT hydrolizes under acidic conditions to produce NH₃, H₂CO and amino acids
 - Irradiation of PAHs covered with water ice produces polycyclic aliphatic hydrocarbons, aromatic ketones (quinones), aromatic alcohols, and aromatic ethers

⇒Bernstein et al. 1995

UV products of IS ice analogs (4)



- Several HMT derivatives detected by GC-MS:
 - methyl-HMT (HMT-CH₃)
 - hydroxy-HMT (HMT-OH)
 - methanyl-HMT (HMT-CH₂OH)
 - + HMT-amino-aldehyde (HMT-NH-CHO)
 - methanyl-aldehyde-HMT (HMT-CHOH-CHO)

⇒Muñoz Caro et al. 2001

Fitting the IR spectrum of the organic residue

Implications for astrobiology (1)

- Glycine and urea produced by ice photolysis
- Other amino acids are formed by acid hydrolysis of HMT, such as aspartic acid, serine, glutamic acid, proline and alanine (Wolman et al. 1971)
- Acid hydrolysis of amino acids exposed to UV irradiation leads to formation of new amino acids, e.g.: glutamic acid + propionic acid + h $\nu \rightarrow$ norleucine (Ferrari and Cultrera 1961)

Implications for astrobiology (2)

- Isolated droplets develop on aqueous solution of organic residue (Dworkin et al. 2000)
- Quinones have similar structure to chlorophyll (Bernstein et al. 2001)
- UV induced chemistry on ices goes beyond HMT (HMT-based molecules)