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Abstract

The behaviour of a near-critical sample of SFg, bounded by container walls with finite thermal
properties, was studied in space during the 1994 IML-2 mission. Experiments were performed
in the range 2500 to 1 mK above the critical point in which simultaneous density and tempera-
ture measurements are conducted during a number of transient heating runs. The results of these
measurements show clearly that a fast isentropic thermalization takes place uniformly throughout
the sample, with essentially no effect on existing temperature and density gradients. The tem-
perature rise caused by the isentropic thermalization is described quantitatively by a theoretical
expression which takes into account the finite thermal impedance of the cell walls. It has been
possible to do so in a manner that satisfactorily represents the observations. The success of this
description enables the separation of isentropic thermalization from true heat transport effects,
thereby opening the way to a determination of the thermal diffusivity of the fluid at temperatures
as close as 1mK to the critical temperature. In addition, the observed isentropic compressive
heating mechanism suggests a new way for assessing specific important thermodynamic prop-
erties in the critical region, based on the experimental determination of the isentropic thermal
expansion coefficient.

PACS: 44.10.+i; 64.60.Fr; 66.10.Cb; 5.70.Jk
Keywords: Critical region; Heat transport; Adiabatic effect

1. Introduction

In the neighbourhood of the critical point (CP) of a pure fluid, many of its ther-
modynamic and transport properties display singular behaviour. Some, such as the
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compressibility and thermal conductivity, on approaching CP tend to infinity, while
others, such as the thermal diffusivity, go to zero [1].

Quantitative experimental corroboration of the theories that have been developed to
account for this behaviour is, especially close to CP, incomplete (cf. [2]). On earth,
owing to the combined effect of a gravitational field and the compressibility of the
fluid, one can realize the critical state only in a narrow horizontal layer of a fluid
sample. Additionally, the introduction of a temperature gradient in a fluid to study heat
transport inevitably leads to spurious convective contributions to this process. For these
reasons it has not been possible to probe reliably either the thermal conductivity A or
the thermal diffusivity D7 of a sample at the critical density much closer to CP than
about 100mK [3]. Thus experimental verification of the true singular behaviour has
been indirect and has relied upon extensions of the theory into a region farther from
CP, where it is necessarily less exact, but where comparisons with experiment have
been possible. The ultimate aim of the work upon which we are engaged and of which
the present paper represents a part is the determination of A and D7 of a pure fluid in
the near-critical region.

In order to determine A or Dr to within say 1 mK from CP, a microgravity environ-
ment is of special value because it provides a means to eliminate density stratification
and convection. From the early stages of this work it was realized however [4-7] that
under these conditions another process of temperature change in a fluid (referred to as
the adiabatic effect (AE) or piston effect) becomes of increasing significance during
any transient heating as CP is approached. Fundamentally, this AE is not a mecha-
nism of true heat transport (contrary to the statements made in some of the literature);
rather, it is a temperature change resulting from isentropic compression in a finite sam-
ple. Heating at the boundary of such a sample causes thermal expansion of the adjacent
fluid layer and, consequently, a pressure increase everywhere in the fluid. This pressure
increase results in an essentially adiabatic increase in temperature and density through-
out the fluid. Various experiments confirming the uniform rapid thermal response in
a near-critical fluid have been reported by Boukari et al. [8], who used ground-based
equipment, and by Bonetti et al. [9], Straub et al. [10] and Michels et al. [11] working
on microgravity platforms.

The interpretation of the AE in a practical system is complicated by the fact that
it introduces an additional heat flow through the walls surrounding the fluid. Dur-
ing the rapid uniform temperature increase these walls remain colder than the fluid
itself and a boundary layer develops at these walls: energy will flow out of the
fluid, cooling it again by adiabatic expansion. Ferrell and Hao [12] studied analyti-
cally the AE including this secondary effect, following a model in which the fluid
is initially at a uniform temperature that is different from that of the container. They
concluded that this secondary effect depends on the ratio between thermal proper-
ties of the wall material and those of the fluid; since the latter exhibit singular be-
haviour near CP, the fraction of heating power dissipated through thermal conduction,
in terms of distance to CP, will depend strongly on actual thermal parameters of the
walls. Beysens et al. [13] experimentally confirmed this effect qualitatively. However,
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to account for it in a quantitative way one has to calculate the overall cell wall parame-
ters which, for most actual cell configurations cannot be accomplished with reasonable
accuracy.

Such a quantitative description of the AE is necessary if measurements of the tran-
sient temperature increase in a fluid near the critical point are to be used to study A
and D7 in the near-critical region. This is because the AE-contribution must be elimi-
nated from the measurements of temperature rise before they are interpreted in terms
of a simple conduction equation.

The work reported here concerns a quantitative description of the AE in mea-
surements in a sample of near-critical SF¢ under microgravity conditions, following
a heating with constant power at a flat boundary surface [14] in a range down to
T — T, =1 mK. This description should enable a separation of the AE from true heat
transport effects in data of measurements on 4 and Dy in the near-critical region of pure
fluids. SFg was chosen as the test fluid mainly because of its convenient critical param-
eters (7, =318.7K, P.=3.75MPa and p. = 744 kg/m> [15]). The measurements were
performed using a custom-made test cell mounted in the European Space Agency’s
Critical Point Facility (CPF) [16], which was flown in the cargo bay of the Space
Shuttle Columbia during the spacelab IML-2 mission, in July 1994. Density changes
were observed interferometrically, while temperature changes were measured using ther-
mistors located in and around the test cell. The total duration of the experiment was
56 h and the maximum acceleration throughout was below 10~*g. To the best of our
knowledge, this is the first work in which simultaneous temperature and density mea-
surements have been made and in which a wide range of states and heating profiles
have been investigated.

A preliminary inspection of our microgravity data has been reported in a previous
paper [11] where the overall capability of the system to register isentropic temper-
ature and density changes in the fluid has been communicated. Here, we fully ex-
plore the isentropic heat transfer mechanism by conducting a thorough analysis of
the performance of the experimental system, including the energy losses to the sur-
roundings. In Section 2 a review of the theory is given where we show that the
AE enables the measurement of the isentropic thermal expansion coefficient o as
previously presented by Michels et al. [11]. Also we extend the theoretical model
proposed by Ferrell and Hao [12], which presumes a stepwise temperature change,
to transient heating at the boundary. The experimental configuration and procedure
are presented in Section 3. The way in which temperature and density data are ob-
tained and analyzed is communicated in Section 4, where it is also explained how
we dealt with the complex geometry of our fluid container. The analysis of the re-
sults in Section 5 shows consistently the role of the AE in a pure critical fluid
surrounded by finitely conducting boundaries. Our conclusions are summarized in
Section 6.
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2. Theory of heat transfer

We consider the transient heating of a compressible fluid of thermal conductivity
/4, thermal diffusivity Dy and density p confined in a fixed volume V by a series of
solid surfaces S;, which themselves possess a thermal conductivity 4; and a thermal
diffusivity D;. The transient heating of the fluid is accomplished by the application
of a constant heat flow g, at a surface S entirely contained within the fluid which
is initiated at time r=0 and terminated at a time t=¢,. It is intended to study the
evolution of the temperature and density in the fluid over a period of time following
initiation of the heat pulse.

2.1. Temperature and density field

In order to find an expression for the temperature field in a locally heated fluid, one
might investigate the problem theoretically by seeking solutions of the fully-non-linear
Navier—Stokes equations, subject to appropriate boundary conditions but in the absence
of a gravitational field. This is a very complicated task and two somewhat simpler
approaches have been adopted in literature, both of which recognize the existence of
a (short) acoustic time scale and a (longer) conduction time scale. In the first simpler
approach [7], the unsteady linearized Navier—Stokes equations are solved separately in
both regimes. In the second approach [4,6], a simplified one-dimensional conservation
equation, the energy equation, is derived, which takes into account both thermal con-
duction and compression-work terms but ignores fluid flow. In these pioneering works,
the thermal conductivity of the fluid container was irrelevant.

The existence of these two time scales is most readily understood by considering the
effect on the pressure. On the (short) acoustic time scale, local fluctuations, caused by
heating, propagate through the fluid as pressure waves; the pressure is neither constant
in time nor spatially uniform. On the (longer) conduction time scale, the pressure in
the system is essentially spatially uniform though not necessarily constant in time.

In the work reported here, we have adopted the second approach as this combines
satisfactory accuracy with less computational effort. The equation describing the thermal
field in a non-viscous compressible fluid is [17]

dr 1 oT\ dP 1
L _ (- [E)E =—v.ovr 1
dt (1 y) (8P)p dt  pCp UVT), )

where 7 is the specific heat ratio (=C,/Cy) and C, and Cy are the specific heats
at constant pressure and constant volume respectively. The second term on the LHS
of Eq. (1) modifies the usual thermal diffusion equation to account for the isentropic
temperature and density changes accompanying variations in the pressure, i.e. the AE.
Eq. (1) shows that, for a spatially uniform pressure change, this term acts uniformly
across the entire fluid thereby leaving any existing temperature gradients unaltered. The
term on the RHS of Eq. (1) (the conduction term) contributes only in the region where
temperature gradients are present. Near to the critical point, the different characteristics
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of the two terms have significant consequences which need to be understood before
one attempts to make measurements of the thermal diffusivity.

Physically, the fact that 4 — co in the approach to the critical point means that the
heat flux provided by the heater g, is transmitted directly to the fluid at the interface
according to the boundary condition

%f-: — VT at s, 0<i<t,. 2
However, the vanishingly small thermal diffusivity of the fluid renders the term on
the right-hand side of Eq. (1) small, so that the heat is contained in a very thin
layer of fluid close to the heater. However, the rapid heating and expansion of the
boundary layer generates a uniform compression of the bulk of the fluid which causes
an isentropic temperature increase throughout the fluid.

In order to find an expression for the changes in the density field we first write

dp (opY\ dT dp\ dP

i (ar)P a (ap @ 3)
If we substitute (dP/dt) from Eq. (1) into Eq. (3), we obtain after some algebra the
expression

dp 1 ap dT 1

—=—— | = i V - (AVT) ;. 4

dt y—1 (GT o Ldt pC, ( ) )
Disregarding the spatial dependence of the pressure and neglecting the implicit spatial
and time variations of the various thermodynamic coefficients, Eq. (4) leads to

dp dr Y3 Vp
e s (7)’

where 2, is the isentropic thermal expansion coefficient. Eq. (5) readily demonstrates
that the AE alters the density essentially proportional to the temperature, regardless of
the distance to the critical point or of the way heat is applied to the fluid. For the region
outside the developing boundary layer, i.e. in the bulk, the second term on the RHS of
Eq. (5) is generally negligible. Note that, as the critical point is approached, due to the
fast divergence of C,, this term is of decreasing importance. Therefore, provided that
the possible existing density gradients are small enough, simultaneous measurements
of temperature and density in the bulk can provide the isentropic thermal expansion
coeflicient 2.

(5)

2.2. Isentropic temperature rise

We are interested here in describing the first phase of the fluid heating during which
the isentropic temperature rise takes place. Numerical solutions of Eqgs. (1) and (2)
show that, with heating pulses typical to this experiment, the resulting temperature and
density changes are sufficiently small for the various thermodynamic coefficients of the
fluid to be considered constant [11].
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In the approximation that the various thermodynamic coefficients do not vary during
heating, one finds, based entirely on thermodynamic considerations, that for a heat flux
gy the temperature rise outside of the boundary layer in the bulk fluid is

ar _ (4r —qs) (1 _l)

dt pVCy v/
In Eq. (6) g, represents the heat losses to the cell walls in a real experiment. These
losses from the sample must be taken into account, since in a real system isentropic
cooling begins simultaneously with the isentropic temperature rise [11].

Ferrell and Hao [12] studied analytically such a combined heating—cooling process,
accounting for the available (for heat exchange) surface area of the container walls
and the transport properties of both the fluid and the walls. Avoiding the long-term
behaviour of the fluid, whenever the developing boundary layer reaches the size of the
characteristic length of the cell, we reproduce from their work the solution of Eq. (6).
For an amount of energy Q delivered to the fluid, all at one instant (¢ =0), the bulk
temperature variation with time is given by

(6)

Tp(t)=(1 —y”l)pcgcpre’* erfcx/t_*, (7a)

where erfc = 1—erf is the complimentary error function and ¢* = #/z.. The characteristic
time 7. for the isentropic equilibration is

te="{%/Dr, (7b)

where

')’—1 N ;S
-1 i
} 7
fé’ﬁ V ;1+0i (C)

is (y — 1) times a weighted sum over the inverse lengths S;/V of the N different
boundary segments. The inverse thermal impedance ratio o; is defined as

Ai A
=7/ v 7o
and S; is the surface area of the ith segment.

Ferrell and Hao [12] analyzed Eq. (7) and concluded that, as the critical point is
approached (7 — T.) and the fluid thermal impedance drops below that of the walls,
a crossover takes place from a rapid decrease in characteristic time #., relatively far
away from T, to a weak increase in ., as the square of the constant volume specific
heat.

Complementing the work of Ferrell and Hao [12], for the case that energy is applied
to the fluid, not instantancously but over a finite period of time (0 — ¢,), Eq. (7a) is
modified to

t

1 — 1 I
T, (t)= pcV/CV /q(t’)e’ erfeVi* dt’, (8)
0




R de Bruijn et al | Physica A 242 (1997) 119-140 125

where ¢(¢) represents the time-dependent energy flux to the fluid. If further, heating
pulses of constant power (qr) are utilized to stimulate the fluid then ¢(t)=g, and
Eq. (8) becomes accordingly

t
1 —_ ’))_l I3 ’
Ty(t) = ! Vi
»(t) =gy VG, /e erfevVit'* dt 9)
0
which after some algebra leads to

Ty(t) = g5 A [i\/z—*— 1+ e erfeV¥|, (10)
VT
where 4 =1t.(1 —77")/(pVCy). This A represents an apparent amplitude in the expres-
sion above. Obviously, A4 strongly depends on the distance to the critical point.
Eq. (10) reveals two limiting cases both valid for ¢ » ¢.. For 6; > 1, or 1=(T—T.)/T.
is relatively large, Eq. (10) reduces to

N -1
Tb(:):q,\/f)_T (Zs,-) [%tvz _ \/,—} (11)
. i=1

which indicates that far away from 7, the boundaries of the system can be approxi-
mately considered as infinitely conducting and their surface area is the most important
parameter for the determination of the heat-loss. The temperature increase is then dic-
tated mainly by the ratio \/Dr/A.

For ;< 1, or 1 is relatively small, Eq. (10) yields, respectively,

Yoas T2
Ty(t)=¢q —) [—t“’z—ﬁ]. (12)
’ f(z VD) LVr

As can be easily seen, for this particular limiting case it is the transport properties of
the boundaries that govern the thermal behavior of the system. At first sight this may
seem to be somewhat surprising since one would rather expect the temperature rise in
the bulk 7(z) to vanish as the isochoric specific heat diverges. Interestingly, in either
of these cases, Eqs. (11) and (12), a simple relation is obtained which predicts an
isentropic temperature change proportional to the square root of the heating time.

3. Experimental setup and procedure
3.1. Facilities and test cell
In CPF the sample fluid is contained in a test cell, which is placed inside a ther-

mostat. The thermostat provides extremely precise temperature stability of the order
of 30 uK/h with spatial gradients of less than 10 pK/cm. The CPF is equipped with
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Fig. 1. The test cell.

a variety of optical and electronic systems which enable the stimulation and observa-
tion of the sample fluid. For optical measurements the CPF provides two sources of
illumination: a 1 mW laser operating at 633nm; and a light-emitting diode. Images from
a Twyman-—Green interferometer (IF) system and direct visualization (VIS) of the sam-
ple are observed with a video camera and a photocamera. Light scattering (LS) signals
are collected on fiber-optic guides and transmitted to a photomultiplier tube. A current
source system (CSS) provides a constant current up to 1 A with a resolution of 20 pA.

Our test cell, shown in Fig. 1, consists of two interconnected cylindrical chambers
with a total volume of approximately 6 cm?. The cell is filled with SF¢ at its critical
density as determined by the disappearance and reappearance of the vapour—liquid
meniscus in the middle of the cell. The larger chamber accommodates a mirror which
forms a part of the IF system, while the smaller chamber enables LS measurements at
discrete angles between 22° and 90° as well as direct visualization.
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The IF chamber of the test cell is fitted with a flat quartz plate, offset by 1 mm
from the optical axis (to which it is parallel). A gold layer measuring 14 mm x 15 mm
and 20 nm thick is deposited on this plate and serves as the heater (R =3.6 2) when
a constant current passes through it utilizing the CSS. Density changes in the adjacent
fluid are monitored throughout the experiment using the IF images; the field of view
is 4 mm in diameter. Five high sensitivity (LK) temperature sensors (thermistors) are
available for temperature measurements. One of them is located in the fluid approxi-
mately 9mm from the heater whereas a second one is embedded in the quartz substrate
behind the gold heater. The remaining thermistors are located in the wall of the cell.
Unfortunately, due to an extreme offset of the thermistor in the quartz, this particular
one could not be used at its highest sensitivity. (For the impact of this see Section 4.2).

The CPF is a fully automatic facility able to run an experiment on a prefixed timeline;
however, its telecommanding capability proved to be absolutely essential for optimizing
the operation of the experiment and frequent changes in the timeline were made during
the course of the experiment.

3.2. Experimental scenario

The actual sequence of experimental temperatures was as follows. The sample was
first heated to T — T, ~2500 mK (48°C) and appreciable (>2 h) allowed for it to
become homogeneous. It was then cooled down in steps to 1000, 300, 100, 50 and finally
15mK above T.. At T. +15mK, a slow cooling ramp was initialized ending a few mK
below 7. when phase separation was confirmed. The sample was again homogenized
at T — 7. ~ 2500 mK and cooled down, in steps, to 2000, 1500 and 800 mK above T
and then, in ramps, to 450, 150, 50,30, 10,5,2 and 1 mK above T.. Finally, the sample
was heated slowly to 7. + 100 mK to check for hysteresis effects.

Following each change in temperature, various waiting periods were employed in an
attempt to improve approximate thermodynamic equilibrium. The evidence from the
IF images was that equilibrium was never reached but that with specific precautions
a steady state could be achieved within reasonable time, e.g. at 7T — I.=1mK in 3 h
and after approaching with a slow ramp (2 mK/h).

4. Data analysis
4.1. Temperature and density

The readings of the various thermistors were acquired by CPF each second. The
temperature indication was in the form of a difference from the set temperature of the
thermostat, i.c. the temperature at which the transient heating runs were performed,
which, in its turn, is defined in terms of difference to T.. Since, moreover, it was
possible to “null” all thermistors at any time, their readings could be obtained at
a maximum resolution.
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The capability of the fluid thermistor to trace accurately the fast, isentropic tem-
perature changes in the bulk, as we approach the critical point, is a matter of seri-
ous concern. To investigate this issue, simple calculations of the thermistor response
have been made (see the appendix a) from which a conclusion arises that the ther-
mistor response gets better and better as 7, is approached! The physical reason for
the good response near to 7. is that the heat flow through the boundary layer
around the thermistor gets larger as the thermal conductivity of the fluid
increases.

The IF setup permitted variations in the density to be monitored through the corre-
sponding variations in the refractive index using the equation

AK (5 ) = dn ) "2 (13)

where 4K is the shift in interference order, An is the shift in the refractive index,
A is the laser light wavelength and I(x, y) is the pathlength of light in the sample.
This equation relates the interference order distribution K(x, y) to the refractive index
n(x, y), which is further related to the density distribution p(x,y) via the Lorentz—
Lorenz expression

n -1

mZQP- (14)

For SF, O =8.35x107% m?/kg [18]. Interferograms could thus be converted to density
profiles which formed the basis for further analysis.

In our setup, the sensitivity of the density measurements was Ap/p =~ 107>, which
did not permit the accurate determination of the small bulk density changes associated
with the gold layer heating pulses. Nevertheless, larger density changes of the bulk
accompanying set temperature changes could easily be measured.

During the heating runs, video images were recorded at various times and digitized
for analysis. The digitized images were analyzed along pixel rows parallel to the heater.
The details of this analysis will be published later [19].

4.2. Heating pulses

When, at a sct temperature, a steady state was obtained, constant-current heating
pulses were applied to the fluid by the plate heater. Pulse duration was varied between
1 and 5 min. Also, using the thermistor in the fluid as the heat source, a few pulses
of elevated power (5.65 mW) but with a duration of <5s were employed.

The power delivered to the system by the plate heater varied between 0.04 and
0.18 mW according to the current selected. Contrary to heating with the thermistor,
this power does not go entirely to the fluid but part of it (g;) is absorbed by the quartz
substrate. This energy decomposition is dictated by the thermodynamic and transport
properties of the fluid and the quartz. Knowledge of the precise amount of energy that
enters the fluid is of paramount importance for the solution of Eq. (10). An obvious
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Fig. 2. Fraction of total delivered energy that enters the heater substrate.

relation for the power g, that goes into the fluid is

I’R
=" 15
1+ gs/q7 (13)

In order to calculate the dissipation ratio g,/q,, here it is assumed that heat trav-
els inside both the quartz and the fluid according to the well-known Fourier equa-
tion with a constant power source at the interface. In this case, the dissipation ratio
is equal to the inverse impedance ratio of the fluid and the heater substrate. Note
that the temperature rise due to the AE is included in the heat-loss term, i.e. the
characteristic time ¢ [Eq. (7b)], as the heater surface also is regarded as a heat-loss
wall, thereby leaving ¢, time-independent. The detailed calculations will be given else-
where [19].

Fig. 2 shows a plot of the fraction of the total energy that enters the quartz, g,/I°R,
at different distances to T.. The solid line represents the predictions arising from the
calculated dissipation ratio where fluid properties are taken from the equation of state
(EOS) by Abbaci and Sengers [15] and diffusivity values are used from the mea-
surements by Jany and Straub [3]; the data points come from measurements by the
thermistor embedded in the quartz plate. It shows that less and less energy goes
to the substrate as 7, is approached, thanks to the increasing conductivity of the
fluid.

The discrepancy between measurements and predictions may be attributed to sev-
eral possible sources of error. Measuring in this way, one does expect to find for
high dissipations to the substrate, a g, lower than predicted, due to inevitable losses.

ar
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Table 1
Inverse thermal impedance and surface area of wall materials

Wall materials 4if/Di (Ws'2/m?K)  8i (mm?)
Aluminum 2.4 x 10* 240
Synthetic quartz 6 x 102 540
Fused silicon 6 x 102 690
KEL-F 5 x 10? 470
Invar (NILO-36) 8 x 103 100
Apparent properties 6 X 103 25 % 103

Furthermore, when most of the dissipated energy goes to the fluid it is probable that
one measures a ¢y too high, due to the temperature increase of the fluid around the
substrate or the thermistor wires. Taking also into account the reduced sensitivity of
the thermistor in the substrate, the comparison is considered satisfactory and, hence-
forth, the literature values [3,15] have been used to calculate the temperature-dependent
fluid-quartz impedance ratio. This ratio further is used in Eq. (15) for solving the heat
transport equations on the fluid’s side.

4.3. Apparent wall properties

In order to implement Egs. (10)—(12) for comparisons with the data of the isen-
tropic temperature rise in the bulk, the transport properties and the surface area of all
the cell walls need to be determined. This is not an easy task because of the com-
plex geometry of the cell and the several different materials utilized in its construction.
Among the various materials of construction we have identified the five most signifi-
cant in view of their relative contribution to heat losses. These five materials exhibit
the highest inverse thermal impedance values together with appreciable surface areas
for heat exchange. Table 1 lists these parts and their corresponding inverse impedance
and surface area values. The inverse thermal impedance values are provided by the
manufacturers while the surface areas are evaluated by simple geometrical consider-
ations. However, calculating the surface areas — available for heat exchange — in a
configuration of such complexity is expected to give only very conservative values
since the possibility cannot be excluded that minor geometrical imperfections can have
a large effect. Indeed, preliminary calculations taking into account the individual wall
materials gave an unsatisfactory correlation between predicted and measured isentropic
temperature changes. Therefore, as customarily adopted in the literature, it seems ap-
propriate to include all effects in just one single set of phenomenological parameters
which will be referred henceforth as the apparent inverse thermal impedance, A/ VD,
and the apparent surface area, S,, of the container walls. Values for these parameters
may be obtained from a “best fit” procedure of Eg. (10) to experimental data. The
values produced in this way are also included in Table 1. As shown, the fitted ap-
parent inverse thermal impedance is, as expected, in the order of magnitude of the
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highest impedances but the apparent surface area indeed turns out to be larger than
calculated.

5. Results and discussion

The apparent critical temperature, on the scale indicated by the measurement thermis-
tor, was determined at the time of filling (several months before the mission). During
the experiment, the critical temperature was redetermined by analysis of the LS signals
during the slow cooling of the test cell through . and by observation of the phase
separation in the VIS channel. It was found that the critical temperature of the sample
determined in this way was 25 mK below that determined on earth. By checking the
filling of the cell we found that there is no measurable leakage and we conclude that
the difference is a consequence of thermistor drift.

Altogether 66 heating runs were performed. During and following a heating run,
two mechanisms of temperature change were certainly apparent. From the IF pro-
files we clearly see a diffusive thermal boundary layer (bent fringes) and from de-
tailed analysis we determine a rapid spatially-uniform fringe shift which corresponds to
a homogeneous density change in the bulk of the fluid (Fig. 3). The latter information
is obtained by utilizing Eqgs. (13) and (14) to deduce density profiles across the parts
of the frames representing the bulk (far away from the developing boundary layer).
It is notable that density variations in the bulk can not be observed by “the naked
eye” because changes are much less than 1% of the original fringe pattern. Moreover,
we have confirmed by our analysis the result of Guenoun et al. [20] that the AE does
not alter any existing density gradients in the sample but acts uniformly across the
fluid.

By the AE, a powerful tool is delivered to determine the isentropic thermal expansion
coefficient o, as a function of the distance to 7. in a novel, intrinsically accurate
way. Recalling arguments advanced with regard to Eq. (5), simultaneous temperature
and density measurements in the bulk are utilized to produce, in a direct manner,
this particular isentropic coefficient. This method is especially in the critical region of
definite advantage since it is independent of the energy transfer outside the bulk of the
fluid. However, the particular technique used in this experiment to measure the density
change is an integral average along the path of the light. One should realize that this
path meets two cell-boundaries, i.e. the window and the mirror, where a boundary
layer will develop during heating, in which the second term on the RHS of Eq. (5)
is not negligible. When the temperature of the fluid changes, the temperature of these
boundaries will stay behind that of the fluid (colder when heating and hotter when
cooling) and the change in density in the developing boundary-layers will be even
larger than the, isentropic, change of the bulk. The average density change along the
path of the light therefore will be larger than the bulk density change. The implications
of this to the measurement of o, is beyond the scope of this paper and will be addressed
in a forthcoming paper.
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Fig. 3. Interferometry fringes (a) before heating (1 =05s), and (b) at time ¢ = 57s after the onset of heating.
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Fig. 4. Comparison of isentropic thermal expansion coefficient «; between results of this experiment and
measurements of Straub and Nitsche [21].

In Fig. 4 the measured values of a, are compared with the results for o, calcu-
lated from the measured Cy by Straub and Nitsche [21]. It shows a good agreement
although, for temperatures closer than 200mK above T, it looks as if our data have
the tendency to exceed their curve. The presently obtained accuracy does not permit
an accurate fit through our data, therefore, for the calculations in this paper, it seems
appropriate to use the values for Cy by Straub and Nitsche [21]. Still, simultaneous
measurement of temperature and density changes to produce the isentropic thermal ex-
pansion coefficient appears to be a particularly convenient way for probing the theory
near 7.
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Fig. 7. Theoretical predictions of isentropic temperature rise in our sample fluid accounting for heat losses
to the heater substrate and through the other surrounding walls.

Attention is directed next to the comparison between the values of the fluid’s
inverse thermal impedance [3,15] with the values of the same property of the wall ma-
terials. Fig. 5 displays the inverse thermal impedance values against the distance to T..
It can be clearly seen that for 7 — T, <40 mK the fluid becomes more conductive
than any other material of the walls while for 7 — T. <200 mK it even attains a value
higher than the apparent inverse thermal impedance. The notion that the finite thermal
impedance of the walls governs the energy losses to the surroundings implies then that
near 7 — IT. =200 mK a conduction crossover takes place as regards the thermalization
time of the sample. This is better demonstrated in Fig. 6 where the characteristic time
t. from Eq. (7), is plotted with respect to distance to 7;. For the calculations presented
in Fig. 6 the best-fit values through our data have been employed for the apparent
inverse thermal impedance and surface area. It is seen that far away from the critical
temperature, . appears to decrease rapidly as 7. is approached. Getting closer to T. it
starts gradually to level off and finally a weak rise is observed according to the (o
variation [12], revealing clearly the crossover to a new equilibration regime.

The influence of the finite thermal impedance of the walls to the thermal response
of our sample during heating at the boundary, is illustrated in Fig. 7. This is a 3D
plot of the predicted isentropic temperature increase [Eq. (10)] versus heating time and
distance to the critical point. For clarity, predictions for only one value of dissipated
energy (/*R) are presented. Upon inspection of the graph, it is recognized that, as T
is approached, there is a characteristic “flattening” of the temperature increase with
a square-root time dependence [Eq. (12)]. A little further from 7;, however, the theo-
retical curves exhibit a prominent peak which becomes higher and broader further in
time. This peak originates from the competition between a lower g, from Eq. (15) and
a higher ¢, from Eq. (7), as T — T increases.
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Fig. 8. Thermistor readings during heat pulses (60 s) of constant power at one of the cell walls together
with predictions by Egs. (10)—(12). The heat flow starts at 1 =0s.

Typical readings from the thermistor located in the fluid are shown in Fig. 8 dur-
ing four heating runs each of 60 s duration together with the predictions according
to Egs. (10)—(12). We see that our thermistor responses are essentially synchronous
with the onset of heating, an important feature of the AE which is not found when
dealing with thermal conduction alone. Comparison with the predictions signifies the
validity of Eq. (10). It also demonstrates that for a temperature as close as 1 mK
from 7., the limiting case of Eq. (12) is applicable but that, at 7. + 2.5 K, 7 is not
relatively large enough for the other limiting case [Eq. (11)] to hold. The intermediate
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states of 7. + 1.5 K and 7, + 100 mK do not permit the use of either of the limiting
equations.

A complete set of measurements is presented in Fig. 9 where the observed isentropic
temperature rise in the bulk is plotted against 7 — 7. at different times after the onset
of heating. The data are normalized with respect to the total dissipated energy (/°R)
entering the fluid [Eq. (15)] in order to facilitate the presentation. Solid lines are
best fits through the data. It shows a remarkable similarity between the main features
observed experimentally and those outlined theoretically in connection with Fig. 7.
Unfortunately, we have not measured far enough from 7. to witness also accurately
the behaviour of the peak in the temperature rise.

Fig. 10 shows the measured amplitude 4 as well as the, according to the apparent
properties of the surrounding walls, predicted 4 versus the distance to the critical point.
Again, the experimental data is in good agreement with the predictions manifesting the
significance of the role of the properties of the surrounding walls to the thermalization
of a critical fluid.

6. Conclusions

The present study provides new theoretical and experimental information regarding
the mechanisms of heat transfer in a near-critical fluid. Two dominant mechanisms
have been identified: a diffusing thermal boundary layer adjacent to heated surfaces
and a homogeneous isentropic temperature change across the entire volume of the
sample. This paper is an extension of previous work [11] which dealt with preliminary
observations from the same experimental setup. The present study was motivated by
the paucity of information in the literature regarding the behaviour of the compression
process (AE) in a real experiment of transient heating of a near-critical fluid with
bounding walls of finite thermal impedance.

The isentropic temperature rise that follows transient heating of a near-critical fluid
has now been determined in a microgravity environment and is described remarkably
well by a development of the theoretical model proposed by Ferrell and Hao [12]. The
important feature of this description is that the equilibration process is profoundly influ-
enced by the properties of the solid surfaces bounding the fluid even though the isen-
tropic heating effect itself is uniform throughout the bulk of the fluid and is independent
of existing gradients. This influence is clearly illustrated by the, now experimentally
confirmed, crossover to a new equilibration regime as 7. is approached.

The thermal behaviour of the container can be characterized in the description by
means of a single set of phenomenological parameters enabling even in a container
of complex geometry the separation of the AE from true heat transport effects in a
quantitative way. This conclusion will permit subsequent analysis of the longer-term
transient behavior to determine the thermal conductivity and diffusivity of the fluid
near to the critical point. Given the difficulty in measuring thermodynamic proper-
ties in the near critical region, simultaneous temperature and density measurements,
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in microgravity, offer an excellent tool for assessing existing equations of state. The
results of the present analysis therefore have a significance beyond the confines of this
work.
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Appendix

To derive the response of the thermistor to changes in the bulk temperature of the
fluid, the following situation is considered:

theat
2 9

theat theat
)y for — - << -, (A.1)

To for t < —

T = T() —+ a(t + lh;“

To + Qtpeat for t > t'“T‘“ .
This corresponds to a constant heat input between ¢ = —fhey and ¢ = fney with an isen-
tropic response in the bulk fluid. By taking the Fourier transform, the spectrum density
S(w) at angular frequency « is obtained, which is

S(@) = — = sin (wt“;“) + (a’h;‘“) 50), (A.2)
where 3(x) is the Dirac delta function. Fourier analysis is employed here because
the solution of the heat flow problem in which the bulk temperature has a simple
harmonic variation with time is known, as a standard problem in linear acoustics.
Eq. (A.2) shows that the Fourier spectrum is heavily weighted towards low frequencies
(much as expected). If we assume now that the thermistor is a homogeneous sphere
of radius R then the temperature is:

T=Ty+ Ajo(k,hr) exp(iwt) (A3)
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where jo is the spherical Bessel function of order zero, ky = +/—iw/Dy, Dy is the
thermal diffusivity of the thermistor material, » is the radial coordinate and 4 is a
constant. For » > R it is then

B
T = Ty + Ty expliot) + - exp{i(wt — k'r)}, (A4)

where the first term is the initial temperature, the second is the Fourier component in
the bulk, and the third is the thermal boundary layer at the surface of the thermistor
(B is a constant). The prime denotes properties of the fluid. Note that the thermal
boundary layer takes the form of an outward-going thermal wave which attenuates
rapidly with increasing r because of the imaginary part of k'

The two boundary conditions which determine the constants 4 and B are those
requiring continuity of temperature on and of heat flow through the surface » =R. The
result is that

T
Aj,(kR) = ﬁ , (A5)
where
B 2 kR \ ji(kR)
f== (7) (1 +ik’R) Jo(kR) (A6)

Notice that, if f <1, the surface temperature of the thermistor follows almost exactly
the bulk temperature of the fluid at angular frequency w. Now, as T — T, the ratio /A’
goes to zero and, since D' = Dy — 0, the term AR/(1+ik’R) also vanishes. Furthermore,
as w — 0, both the term kR/(1 + ik’R) and the ratio of Bessel functions go to zero.

The net result of all this calculation is that, the surface temperature of the thermistor
should follow that of the bulk fluid more and more closely as T — T,.
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