
Chapter 2

An atomic force microscopy

study of the (001) surface

of triclinic hen egg-white

lysozyme crystals

The (001) surface of triclinic hen egg-white lysozyme-nitrate crystals has been
investigated by in-situ atomic force microscopy to compare its growth mech-
anisms and properties to those of other lysozyme pseudo-polymorphs. The
crystal morphology derived from connected net analysis using the macrobond
concept is in good agreement with the experimental morphology of the crystals.
Surface structures observed by AFM include rounded steps, growth spirals, 3D
nucleation and impurity pinning. The growth spirals are rounded and highly
anisotropic. Both screw and edge dislocations are found, characterised by hol-
low core outcrops. The observed hollow core radii are an order of magnitude
larger than theoretical values, but do depend on supersaturation. From the
rounded shape of the spirals and the absence of 2D nucleation we find an edge
free energy 1.3< γm/kT < 3, which is similar to values found for tetragonal ly-
sozyme. Serrated step patterns indicate impurity pinning. Complete blocking
by impurities is not found. The step velocity is proportional to the relative
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supersaturation. Using the kinetic coefficient, we find a sticking fraction of
4×10−4 for HEWL molecules to become attached to a kink, which is signifi-
cantly higher compared to the sticking fraction for orthorhombic lysozyme.

2.1 Introduction

X-ray diffraction is the main route towards structure determination of protein
macromolecules. To increase X-ray resolution scientists continue to search for
methods to improve protein crystal quality, using both practical and funda-
mental approaches[1]. In both approaches hen egg-white lysozyme (HEWL)
is often used as a model compound to test new techniques and ideas.

Lysozyme can be crystallised in various crystal structures, for example
tetragonal, orthorhombic, monoclinic and triclinic[2, 3]. The crystal structure
obtained depends on the choice of the salt used as crystallising agent. Using
sodium nitrate as a crystallising agent, monoclinic as well as triclinic HEWL
can be grown[4, 5]; sodium chloride yields tetragonal HEWL. In the tetragonal
form, chloride ions are incorporated into the crystal structure, whereas in the
triclinic form nitrate ions are incorporated. Therefore, these different lysozyme
crystal structures are pseudo-polymorphs.

Atomic force microscopy (AFM) is often used to investigate crystallisation
mechanisms, because crystal growth is a surface process. Most AFM studies
on HEWL involve the tetragonal form[6, 7], despite that this crystal structure
with eight molecules per unit cell is the most complex of all HEWL pseudo-
polymorphs. Few AFM studies involve other pseudopolymorphs of lysozyme
(orthorhombic[8], monoclinic[9]). Triclinic lysozyme has the most simple struc-
ture with only one molecule per unit cell. This implies a Kossel-like [10] growth
mechanism for triclinic lysozyme, which should make the growth process rela-
tively simple to understand. In spite of its simplicity and yielding the highest
XRD resolution[11], the growth mechanisms of triclinic lysozyme have not
yet been investigated in detail. In this paper we aim for a more quantitative
understanding of the growth mechanisms and properties of triclinic lysozyme-
nitrate crystals, such as morphology, spiral growth, step kinetics and the edge
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free energy, and compare our observations with other pseudo-polymorphs to
investigate similarities and differences.

2.2 Experimental procedures

2.2.1 Crystal growth

HEWL from Sigma-Aldrich (lot nrs. 51K7028 and 81K1554) was used, with-
out further purification, as source material for crystal growth. Sodium ni-
trate, sodium acetate and acetic acid were all of analytical grade. A buffer
stock solution of sodium acetate and acetic acid was made in deionised water
(>15 MΩcm) to result in a 0.05 M NaCH3COO/HCH3COO solution of pH
4.5. Salt and lysozyme stock solutions were made in buffer solution. The
buffer, salt and protein stock solutions were filtered over 0.2 μm membranes
(Schleicher & Schuell). By mixing these three stock solutions, the crystallisa-
tion solutions were prepared containing 10 mg/ml HEWL and 0.2 M NaNO3

in 0.05 M NaCH3COO/HCH3COO buffer.

A glass cell of 2 ml volume was filled with mother liquor. This glass
cell was placed in a larger water flow cell. Temperature was controlled by
flowing water from a Julabo F25 temperature controlled water bath around
the glass cell. To grow triclinic lysozyme crystals, a strategy similar to that
reported in [5] was used. First, the temperature is set at 4

o
C for 12 hours

to induce nucleation. This turns the solution turbid and both monoclinic and
triclinic crystals are formed. After 2 hours, the glass cell is taken out of its
flow cell and subsequently left at room temperature (18-25

o
C) for 5 to 6 days.

At room temperature the number of nuclei is largely reduced and the turbid
system turns clear. The meta-stable monoclinic crystals dissolve, while the
stable triclinic crystals continue to grow slowly.

2.2.2 In-situ atomic force microscopy

To prepare the triclinic lysozyme crystals for AFM measurements the contents
of the glass cell is emptied into a glass petri-dish. A solution of 3 mg/ml HEWL
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and 0.2 M NaNO3 in sodium acetate buffer of pH 4.5 is added up to the rim
of the petri-dish (12 ml in total). Then the petri-dish is sealed off, preventing
exposure of the solution to the ambient air. Exposure to the ambient air
results in the growth of spherulites and a surplus of small crystallites. The
solution containing triclinic crystals is left at room temperature for a further
2 days. During this period of continued growth the crystals adhere to the
glass bottom of the petri-dish, which prevents specimen slip during the AFM
measurements

Before measurements a part of the solution is removed from the petri-
dish so that 5.5 ml remained. The petri-dish is placed on the stage of a
Nanoscope Dimension (Digital Instruments Inc.) AFM. An oxide-sharpened
silicon nitride tip is used. The cantilever, a 120-μm-high isosceles triangle, has
a spring constant of 0.06 Nm−1. The microscope is operated in constant-force
contact mode, and both height and deflection images are recorded. Surfaces
of lysozyme crystals are very soft. In order to reduce tip-induced damage of
the surface, the feedback controls are set to react quickly. Slow response runs
the tip into the surface of the crystal, wearing out a square pattern.

Observations were carried out at room temperature, which can fluctuate.
In our case we had a spread of 2oC during a single day of measurements
and a range from 20.5oC up to 24.5oC for all experiments. During the AFM
observations samples of solution of 100 μl were removed from the petri-dish
at half hour intervals. From these samples the lysozyme concentration was
determined by UV absorption measurements at 281.5 nm (absorption coeffi-
cient: 2.64 l g−1 cm−1 [12]). Temperature and concentration are necessary
parameters to determine the driving force of crystal growth Δμ

kT , which is given
by

Δμ

kT
= ln

fc

feqceq
, (2.1)

where k is Boltzmann’s constant, T is the temperature, f and feq are activity
coefficients, which we take as independent of concentration, and c and ceq are
the actual and equilibrium lysozyme concentrations, respectively, at a given
temperature. To change the driving force Δμ

kT during AFM measurements, part
of the solution was replaced with a more dilute solution of lysozyme.
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2.3 Results and discussion

2.3.1 Morphology

Figure 2.1a shows a typical example of the triclinic lysozyme crystals grown
in our laboratory for AFM measurements. From X-ray diffraction data we ob-
tained the following cell parameters for the triclinic unit cell with space group
P1: a=27.18 Å, b=31.88 Å, c=34.21 Å, α=88.67o, β=108.42o and γ=111.98o.
These values are very close to the unit cell parameters reported in the liter-
ature [11] and confirm the identity of the triclinic pseudo-polymorph. Using
angular measurements of crystals viewed in the optical microscope as well
as single crystal X-ray diffraction measurements we indexed the crystal faces
of our lysozyme crystals. The crystals were usually oriented in the petri-dish
with either their (001) or (001̄) face upward∗. Besides the (00±1), (0±10) and
(±100) faces, which were always observed, in many cases we also encountered
(11̄0) and (1̄10).

To compare experiment with theory, the crystal shape was calculated by
using the cell parameters and the computer program Facelift [13]. This pro-
gram is based on the Hartman-Perdok theory [14], which relates crystal mor-
phology to internal structure using bond energies between growth units. We
start with finding the connected nets in the triclinic lysozyme structure. As a
lysozyme molecule has many bonds of various strengths with each neighbour-
ing molecule, we used the macrobond energies as derived by Matsuura and
Chernov [15] to sum these. These bonds are used in Facelift to identify the
connected nets and to calculate the vacuum attachment energies belonging to
them (table 2.1). From the attachment energies we find the growth form by
assuming that the growth rate of each face is proportional to its attachment
energy[14]. Experiments and calculations show good agreement: both show
the (±100), (0± 10), (00± 1), (11̄0) and (1̄10) faces to be present in the mor-
phology (figure 2.1b). The distance between the opposite (001) and (001̄) faces
of our crystals is smaller than in the calculated morphology, because growth

∗As the absolute configuration of the non-centrosymmetric crystal structure is not known,

we are not able to distinguish between the faces (hkl) and (h̄k̄l̄).
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Figure 2.1: a) Optical view of triclinic hen egg-white lysozyme crystals, ob-
tained in a 0.2 M NaNO3, 50 mM acetate buffer solution as described in section
2.2. b) Morphology of triclinic lysozyme as calculated by Facelift. This is not a
3D representation, but a projection of the morphology on the ab-plane.
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Table 2.1: Attachment energies in vacuum and interplanar distances for the
connected nets of triclinic HEWL crystals on the basis of macrobonds.

Connected net
(F-face) EAtt. (kJ/mol) dhkl (nm)

001 -382 3.23
010 -418 2.95
100 -464 2.39
1̄10 -536 2.35
101̄ -706 2.33
11̄1̄ -712 2.17

downwards is stopped by the glass bottom of the cell or petri-dish. (11̄1)/(1̄11̄)
and (1̄01)/(101̄) faces are not found in our experiments. These faces are very
small, and it might be difficult to reveal them by optical microscopy due to
projection effects. We conclude that the macrobond concept introduced by
Matsuura [15] is a good approximation for calculations on triclinic lysozyme.

2.3.2 Surface structure

AFM measurements on the (001) and (001̄) faces of triclinic lysozyme show
various surface phenomena. Step sources were observed in the form of sin-
gle and multiple growth spirals (figure 2.2a). We also found incorporation of
sedimented particles (figure 2.2b). In a few cases we observed tip-induced 2D
nucleation. Also 3D islands were observed. The step patterns often showed
bunching and impurity pinning. The outcrops of both screw and edge disloca-
tions at the surface are characterised by hollow cores. No differences in surface
morphology were found on the opposite (001) and (001̄) faces. Therefore in
the rest of this paper both faces are indexed as (001).



22 AFM on triclinic HEWL

Figure 2.2: In-situ AFM images of growth patterns on the (001) face of triclinic
lysozyme crystals. (a) Height image showing a double spiral. (b) Deflection image
of a sedimented particle being incorporated into the crystal. (c) Height image
of an array of dislocations. On the left and right side of image (c), scan-induced
damage to the surface is visible.

Spirals and other step sources

A variety of growth spirals was found: single spirals, double spirals, closed
loop steps originating from dislocation pairs of opposite sign, and dislocation
arrays (see figure 2.2c). The step height of these spirals was always 3.2 ±
0.2 nm, matching the interplanar distance, d001, of 3.23 nm. This height also
corresponds to approximately the diameter of one lysozyme molecule.

Individual or groups of dislocations are the sources of the spirals. The
component of the Burgers vector perpendicular to the surface, b⊥, is equivalent
to d001. All spirals found are rounded, regardless of supersaturation, and
polygonal spirals were not observed. The spiral shapes were found to be
highly anisotropic (see figure 2.3a), appearing elliptical with the long axis
parallel to the [010] direction. Besides the anisotropy between the < 010 >

and the < 100 > directions, a strong anisotropy exists between the [010] and
the [01̄0] direction. This indicates a large difference in step velocity for these
opposite directions. Entire triclinic lysozyme crystals also show polar growth
along <010>, as we concluded from in-situ optical microscopic observations.

While spirals are the main source of steps on the (001) surface of triclinic
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Figure 2.3: Morphology of the anisotropic spirals on (001) lysozyme. a) Orien-
tation of spirals with respect to the crystal habit. A lysozyme molecule is drawn
to show its orientation with respect to crystal habit. b) Kinetic Wulff plot show-
ing step velocity versus step orientation for spirals on the (001) surface at Δμ

kT =
0.4 (dashed line) and Δμ

kT = 1.2 (solid line). Spirals are approximated by ellipses
to simplify the reconstruction. The dotted line shows the Wulff plot in case the
growth centre would lie at the centre of the ellipse.
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HEWL, other sources do occur. Step sources in the form of 3D islands were
observed (see figure 2.4). These islands are likely to originate from sedimented
particles, as reported by e.g. [[16, 17]], which may originate from the solution-
air interface where the local supersaturation is increased due to evaporation.
The islands expand as step bunches of typically 40-80 steps high. The ac-
cumulated steps propagate at a slightly slower rate than the mono-molecular
steps of the spirals. The 3D islands show the same anisotropy as the spirals.

In a few cases we observed 2D nucleation of islands. Taking into account
their position at the edges of the AFM scan range, these nuclei are likely a
result of tip-surface interaction. Two-dimensional nucleation does not play a
role as a step source for any of the applied supersaturations in this study.

Steps

The step speed is anisotropic, as is clear from the shape of the spirals. The
shape of the spirals at large distance from the growth centres is determined by
the anisotropy in step velocity. Using a two-dimensional inverse kinetic Wulff
construction [18] it is possible to determine the step speed as a function of the
orientation from the shape of the spirals (see appendix). Figure 2.3b shows
the Wulff plots obtained in this way for low and high Δμ

kT . The step velocity is
higher for the high Δμ

kT , but the polar velocity plots are similar in shape, thus
the anisotropy in step propagation changes little with supersaturation.

Step speeds for the slowest step directions were determined from series of
scans at various supersaturations. Figure 2.5 shows the results as function of
HEWL concentration and of driving force Δμ

kT . We find the step speed to be
linear in its concentration dependence:

vstep = β
c − ceq

ceq
, (2.2)

in which ceq is 0.4 mg/ml and β is 2.9 nm/s. The equilibrium concentration
was verified by additional experiments in which the occurrence of growth or
dissolution of seeded triclinic HEWL crystals was examined in solutions of
different concentrations around ceq. The linear dependence of the step velocity
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Figure 2.4: Series of in-situ AFM deflection images of a 20 μm x 20 μm surface
area showing the evolution of 3D islands on the (001) face of triclinic lysozyme.
The pictures are recorded at a 8.5 minute interval. Spirals and hollow cores are
overgrown by the islands, but reappear on top.
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Figure 2.5: Step velocity as a function of HEWL concentration and driving
force. The step velocities are averaged values for those directions that corre-
spond with the “slowest” 180o segment of the kinetic Wulff plot. The average
temperature is 295 K.

complies with the linear law of Wilson-Frenkel [19, 20]:

vstep ∝ J0

(
eΔμ/kT − 1

)
≈ J0

c − ceq

ceq
, (2.3)

where equation (2.1) was used to rewrite the exponential.
All spirals observed were rounded, even for the driving force approaching

zero. This indicates a high kink density of the steps and thus low kink energies
φk. Another possible cause of the roundness of the spirals is impurity pinning.
As the step speed is proportional to the supersaturation σ, this influence must
be small.

Impurity pinning has been observed on protein crystals [21] before, includ-
ing tetragonal lysozyme [22]. Although in our experiments the influence of
impurity pinning on step propagation is small, serrated step patterns as shown
in figure 2.6 provide evidence for its presence. This conclusion is supported
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Figure 2.6: Impurity pinning of steps on the (001) face of triclinic lysozyme. a)
AFM scan giving an overview of the serrated step patterns. In some areas, the
shape of subsequent steps is roughly the same, which confirms impurity pinning.
b) Detail, showing the part outlined by the square in a). The two deep ’fjords’
indicate local blocking of steps by impurities.

by the fact that the perturbed patterns are often repetitive for subsequent
steps. Steps are blocked completely by impurities if the distance d between
adjacent impurities is smaller than twice the radius of the critical nucleus size,
i.e. d < 2 rc. The critical radius, rc, depends on the edge free energy γ and
the driving force. Thus, also the critical distance dcrit depends on γ and Δμ:

dcrit =
2γΩ
Δμ

, (2.4)

in which Ω is the volume of one growth unit (25.9 nm3 for triclinic lysozyme).
As the edge free energy for triclinic lysozyme crystals is not available in liter-
ature, we use that of tetragonal lysozyme. For tetragonal lysozyme literature
reports values† in the order of 1 mJ/m2 [7, 23–25]. To calculate an upper
limit for the critical distance dcrit, we use the largest value of γ from literature

†In the protein literature edge free energy is often expressed as a measure of energy per
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and the smallest value of Δμ from our experiments. We find dcritical <75 nm.
Locally, blocking can occur by inhomogeneously distributed groups of closely
separated impurities, with the steps flowing around these groups. Such a
mechanism is suggested by the presence of deep “fjords” (figure 2.6b). How-
ever, on average, the distance between pinning points is larger than dcrit, the
smallest observed distance being 180±10 nm, and impurity blocking is not
expected to occur. Moreover, if impurity adsorption had a strong blocking
effect, step bunches would move faster than individual steps [26]. We ob-
served the opposite, which is in compliance with the limited role of impurities.
To get an idea of the molecular weight of the impurities in the source mate-
rial, we performed Matrix Assisted Laser Decoupling/Ionising Time-of-Flight
(MALDI-TOF) measurements on our HEWL material. The impurities found
by this method were of low molecular weight (< 5 kDa).

Hollow cores

Similar to other types of protein crystals [16, 27, 28], the outcrops of disloca-
tions ending at the (001) surface of the triclinic lysozyme crystals are marked
by hollow cores. The hollow cores remain present even when step bunches pass
over them (see figure 2.4). Two types of hollow cores were observed. The first
type emits steps and it produces either spirals (figure 2.4) or extra steps in
step trains (figure 2.7). Steps emitted from hollow cores of this type all have a
height of d001, indicating screw dislocations with a Burgers vector b=[001]. As
for a given supersaturation the hollow core radii of this type are all the same,
we do not expect an extra edge component [100] or [010] for the dislocations,
because in that case a part of the hollow cores would be wider.

The second type of hollow core does not emit steps (see figure 2.7). Here
only edge dislocations are involved. As the hollow core radii have practically
the same size as that of screw dislocations, the Burgers vector must be com-
parable in length. Edge dislocations have a Burgers vector of either [100] or
[010], which is close to the Burgers vector length |[001]| of a screw disloca-

molecule. Conversion from “per molecule” to “per square meter” depends on the choice of

surface area per molecule.
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Figure 2.7: a) AFM height image showing hollow core outcrops on the (001)
surface of triclinic lysozyme. Arrows indicate a screw (s) and an edge (e) dislo-
cation. b) Detail showing the hollow core in the part outlined by the square in
figure a).
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Figure 2.8: Hollow core radius versus driving force. Squares indicate experi-
mental data. The circle indicates the (calculated) Frank radius for γ = 1 mJ/m2

and G = 0.12 GPa. The lines indicate calculated hollow core radii as a function
of driving force Δμ

kT for γ = 1 mJ/m2 and various shear moduli G. Experimental
data are an order of magnitude larger than theoretical values.

tion. Thus, dislocations ending on the (001) surface of triclinic lysozyme have
Burgers vectors [001], [100] or [010].

For various driving forces, radii of hollow cores associated with screw dislo-
cations were determined by recording cross sections through the hollow cores
in the AFM height images (figure 2.8). The theoretically expected hollow core
size follows from thermodynamic models [29–31] as well as from the analysis
of an isotropic growth spiral [32], both considering the stress field around its
dislocation:

rhc = − γ Ω
2Δμ

(
1 −

√
1 + 4

G b2 Δμ

8π2 γ2 Ω

)
. (2.5)
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In this equation, rhc is the hollow core radius, b the length of the Burgers vector
and G the shear modulus. Using literature data on the Young’s modulus for
triclinic lysozyme crystals [33] and a Poisson’s ratio of 0.25, the shear modulus
was calculated to be 0.12±0.08 GPa. The calculated hollow core radius for an
edge free energy of 1 mJ/m2 versus driving force is indicated by the lines in
figure 2.8. The open circle indicates the Frank radius [29],

rf =
Gb2

8 π2 γ
, (2.6)

using the same parameter values. This radius corresponds with the theoretical
size of the hollow core at equilibrium. The measured core radius decreases with
increasing driving force, as is expected from theory. Data, however, show that
the observed hollow core radii are one order of magnitude larger than theory.
Great care should be taken in interpreting measured hollow core sizes. It is
energetically unfavourable for a hollow core to simply end at the surface. At
the surface, a trumpet-shaped hollow core outcrop develops as described by
Frank [29] and Srolovitz and Safran [34] for equilibrium. Combined TEM and
AFM measurements on GaN confirm the existence of such craters [35]. Due to
the AFM tip radius of about 20 nm the crater region is imaged, but the actual
hollow core is not. It cannot descent down a hollow core of comparable radius
more than approximately 5 nm. The combination of a crater-like outcrop and
limitations due to the AFM tip size results in measuring a wider and more
shallow pattern than the actual hollow core[35]. Liu et al. [36] modelled the
shape of the crater region at equilibrium and at Δμ

kT = 0.2 using Monte Carlo
simulations. These indicate a steeper crater region for Δμ

kT > 0. Although we
did not measure the actual core size, the supersaturation dependence of the
core radius is expected to be reflected in the measured crater radii.

2.4 Step energetics and kinetics

2.4.1 Energetics

As mentioned above, the fact that the steps are rounded implies a low kink
energy and thus a high kink density. For the (001) face of a Kossel crystal the



32 AFM on triclinic HEWL

transition between rounded and polygonised spirals occurs for a kink energy
φk/kT ≈ 1.5[37], which corresponds with a kink density of nk ≈ 0.37 [38].
So for (001) triclinic lysozyme φk/kT ≤ 1.5, if we assume a similar behaviour
of the connected net in the d001 slice. On the other hand, the edge free
energy must be relatively high, as no 2D nuclei were observed. This apparent
contradiction can be explained by looking at the connected net in the d001

slice, as shown in figure 2.9 for a step parallel to [010]. For the other steps the
situation is similar. For this simple crystal graph the kink and edge energy
are proportional to 1

2ED and 1
2(EC + EA) respectively. Since the macrobond

energies EA, EC and ED do not differ too much [15], one can state that the
edge energy is roughly twice the kink energy. For the Kossel crystal the edge
energy is lower, being equal to the kink energy.

Figure 2.9: Connected net in the d001 slice of triclinic HEWL showing a step
parallel to [010]. Bond notation is according to Matsuura and Chernov [15]. A
kink is indicated by φk.

An alternative way to make an estimate of φk/kT using the equivalent
wetting assumption[14]:

φk

kT
=

1
2

ED

Ecryst
× ΔHdiss

RT
. (2.7)

This gives φk/kT=3.7, which is too high. From this value it follows that
we have “more than equivalent wetting” [39], i.e. a situation in which the
solvent interacts stronger with the crystal surface than with dissolved protein
molecules.

A lower limit for φ/kT can be obtained from the fact that the surface was
never kinetically roughened, even for the highest Δμ

kT = 2. Thus, the critical
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nucleus size was always larger than one growth unit. This sets a lower limit
to the edge energy per molecule γm of

γm

kT
>

1
2

Δμ

kT
, (2.8)

which follows from the expression for the critical nucleus r∗ = γΩ/Δμ with
the edge energy γ per square meter . Thus, γm/kT ≈ 2φ/kT is larger than 1.
As for (001) lysozyme φk ≈ φ, it follows from the above that the edge energy
must be confined between

1 <
γm

kT
< 3 .

If we consider an edge free energy of tetragonal lysozyme of 1.2 mJ/m2 [24] and
an effective surface of 3 by 3 nm (i.e. approximately one side of the molecule),
we find γm/kT is 1.3 for this crystal form. This edge free energy is within
the range we find for triclinic lysozyme. At a driving force of 0.5 tetragonal
lysozyme grows by 2D nucleation[7], whereas for triclinic HEWL 2D nucleation
is absent up to a driving force of at least 2. Thus, the edge free energy of the
triclinic form will be higher than 1.3kT .

For isotropic spirals, the step spacing far away from the spiral centre is
related to the critical radius by [30]

Δr∞ = 19rc . (2.9)

At Δμ
kT =1 the critical radius is between 3 to 9 nm for 1 < γm

kT < 3. Thus, the
step spacing of the spiral arms should be 60-180 nm for this supersaturation.
However, experiment shows step spacings varying from 1 up to 5 μm, which
is one order of magnitude larger. This discrepancy is explained by the fact
that the stress field of the dislocation associated with the hollow core slows
down the rotation speed of the spiral [40]. For constant step speed this results
in a larger step spacing. A simple expression for the step spacing of a spiral
emerging from a central obstacle with perimeter length P has been put forward
by De Yoreo et al. [40]:

λ = 19 rc + P . (2.10)
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For a hollow core the length of the perimeter is P = 2πrhc, in which the crater
region is included in rhc. Using measured values of rhc ≈150 nm we now come
to step spacings of about 1 μm, which is the right order of magnitude.

2.4.2 Kinetics

The propagation velocity of a step vstep is determined by the kink length w,
the kink density (number of kinks per step site) nk, and the effective addition
frequency of growth units into a kink position, veff [38, 41, 42]:

vstep = nk · w · νeff . (2.11)

The effective addition frequency is the difference between the addition fre-
quency and the removal frequency of growth units to and from a kink site:
νeff = νadd − νrem. The addition frequency is given by:

νadd = χS νo

= χeq expΔμ/kT S νo , (2.12)

in which χ is the volume fraction of growth units (instead of concentration,
as the protein growth units are much larger than the solvent molecules). ν0 is
the number of times per second a growth unit adjacent to a kink attempts to
stick to this position. S is the sticking fraction, i.e. the chance that such an
attempt is successful. The removal frequency is assumed to be independent of
supersaturation.

At equilibrium (Δμ = 0), the removal frequency is equal to the addition
frequency:

νrem = χeq exp0/kT S νo . (2.13)

Thus, the effective addition frequency becomes

νeff = χeq S νo

[
expΔμ/kT −1

]
(2.14)

= χeq S νo σ , (2.15)

in which σ is the relative supersaturation defined by χ−χeq

χeq

∼= c−ceq

ceq
.
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The time for a lysozyme molecule to displace over a distance d ≈ (d̄2)1/2

in its solution is given by t = d̄2

6D , with D the diffusion constant [43]. Since
addition to a kink site proceeds by a “jump” downwards over the step height,
h, and movement upwards and in the horizontal directions does not play a
role, it follows that

νo
∼= (6t)−1 ∼= D

h2
. (2.16)

Substituting 2.15 and 2.16 into 2.11 we find for the step speed

vstep = nk w χeq S
D

h2
σ . (2.17)

So, the sticking fraction S becomes

S =
vstep h2

nk w χeq D σ
(2.18)

=
β h2

nk w χeq D
, (2.19)

in which β is the kinetic coefficient. β is 2.9 nm/s as determined by experiment
(see section 2.3.2). The kink density nk is about 0.5, as the steps in our
experiments are rounded. By approximating the HEWL molecule by a cube
of 3 by 3 nm we take the step height h and kink length w to be 3 nm. The
equilibrium volume fraction of lysozyme χeq is approximately 4× 10−4. From
literature we take an averaged value of the diffusion coefficient for lysozyme
in a 0.05 M NaAc buffer and NaCl as precipitating agent, which is 1.2×10−10

m2 s−1 [44, 45]. Thus, we find a sticking fraction S of 4 × 10−4 for triclinic
lysozyme. For [100] steps on (010) orthorhombic lysozyme the sticking fraction
was found to be in the order of 10−6 [9]. The kink sites of the orthorhombic
crystals are made up of four molecules, which results in four different sticking
fractions for the individual molecules. Some of the additions are less favourable
than others, leading to a lower average S than in the case of our triclinic
crystals with only one molecule per kink site. Also, orthorhombic lysozyme
is grown from a chloride solution in stead of a nitrate solution. Kink kinetics
and pre-kink orientation requirements may therefore differ significantly.
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2.5 Conclusions

The observed morphology of triclinic HEWL crystals grown for in-situ AFM
measurements on the (001) face is in agreement with the morphology derived
from the connected net analysis using the macrobond concept by Matsuura
and Chernov[15]. AFM images show rounded steps, single and multiple growth
spirals with large anisotropy, hollow cores and step bunching.

The main step sources are the growth spirals, although 3D nucleation was
also observed. Step patterns indicate the occurrence of impurity pinning.
However, steps are not blocked completely by the impurities. Both screw and
edge dislocations are marked by hollow core outcrops at the surface. But the
radii of the hollow cores are one order of magnitude larger than theoretical
values, which is explained by their trumpet shaped emergence at the surface.
The velocity of the steps is proportional to the relative supersaturation. From
morphology and the experimentally determined kinetic coefficient we find a
sticking fraction S=4×10−4 for a protein molecule to become attached to a
kink site, which is significantly different compared to the sticking fraction
for orthorhombic lysozyme. From the rounded shape of the spirals and the
absence of 2D nucleation we conclude that the step free energy must be in the
range 1.3< γm/kT <3, which is comparable to values of tetragonal lysozyme.
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Appendix A: Inverse Wulff construction applied to

growth spirals

The inverse Wulff construction is used to obtain a polar plot of step velocity
versus step orientation from spiral shapes imaged by AFM. In this an ellipse is
used as an approximation of the more or less elliptically shaped growth spirals.
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For an ellipse with the centre at (0,0) we can write the following expression:

x2

k2
+

y2

(k − 1)2
= p2 , (A.1)

in which, k and p are constants defining the ellipse. Equation A.1 can be
rewritten as a function f(x)

f(x) = ±(k − 1)

√
p2 − x2

k2
, (A.2)

in which the ± indicates the top and bottom sides of the ellipse. The first step
in performing the inverse Wulff construction is to find the tangent for every
point of the ellipse. Then, we draw a line perpendicular to the tangent. This
line should run through the so-called growth centre, which is the dislocation
outcrop for a spiral (see figure A.1). The growth centre can be any point
within the ellipse.

Figure A.1: Principle of the inverse Wulff construction starting from an ellip-
tical spiral shape.

Thus, the first step is to find the tangent in every point of the ellipse. The
derivative of f(x)

f ′(x) = ±(1 − k)
k2

x√
p2 − x2

k2

, (A.3)
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gives the direction of the tangent for all points on the ellipse. As one can see,
for x = pk this results in a division by zero, i.e. a vertical line. The tangent
t(x) can be written as

t(x) = f ′(xt)x + bt , (A.4)

in which f ′(xt) is the derivative of the ellipse, and thus the slope of the tangent
line, in point xt of the ellipse, and bt is the intersection of the tangent with the
vertical y-axis. In the point where the tangent touches the ellipse, at (xt, yt)
(see figure A.1), we find that f(xt) = t(xt). We can use this fact to find a
value for bt:

bt = f(xt) − f ′(xt) xt . (A.5)

Next step is to define the line perpendicular to t(x) that passes through
the growth centre (xc, yc). For this perpendicular line l(x) we can derive:

l(x) = a
l
x + b

l

= x tanβ + b
l
, (A.6)

in which β = (1
2π − α) as defined in figure A.1. In the resulting equation b

l
is

unknown. Since β = 1
2π + arctan[f ′(xt)] we can write for b

l

b
l

= yc − xc tan β (A.7)

= yc − xc tan (
1
2
π + arctan (f ′(xt))) . (A.8)

Now we can find the intersection point of the tangent and the perpendicular
line, which is the point (XW , YW ) on the Wulff plot corresponding to the point
(xt, yt) on the ellipse. This is the point where t(XW ) = l(XW ):

f ′(xt) XW + bt = XW tanβ + b
l

(A.9)

(f ′(xt) − tan β)XW = bl − bt (A.10)

XW =
(bl − bt)

f ′(xt) − tanβ
. (A.11)
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By substituting XW in either equation A.4 or A.6 we find YW

YW =
(b

l
− bt) tanβ

f ′(xt) − tanβ
+ b

l
. (A.12)

The complete set of points (XW , YW ) represents the polar Wulff plot, which
relates step velocity to step orientation.
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