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A poet once said "The whole universe is in a glass of wine." We will probably

never know in what sense he meant that, for poets do not write to be understood. But

it is true that if we look at a glass closely enough we see the entire universe. There are

the things of physics: the twisting liquid which evaporates depending on the wind and

weather, the re�ections in the glass, and our imaginations adds the atoms. The glass

is a distillation of the Earth�s rocks, and in its composition we see the secret of the

universe�s age, and the evolution of the stars. What strange array of chemicals are

there in the wine? How did they come to be? There are the ferments, the enzymes,

the substrates, and the products. There in wine is found the great generalization: all

life is fermentation. Nobody can discover the chemistry of wine without discovering,

as did Louis Pasteur, the cause of much disease. How vivid is the claret, pressing

its existence into the consciousness that watches it! If our small minds, for some

convenience, divide this glass of wine, this universe, into parts � physics, biology,

geology, astronomy, psychology, and so on � remember that Nature does not know it!

So let us put it all back together, not forgetting ultimately what it is for. Let it give

us one more �nal pleasure: drink it and forget it all!

Richard P. Feynman
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Beste lezer

Voor u ligt het resultaat van ruim vier jaar promotieonderzoek. Vier jaar lijkt

een lange tijd, maar voor je het weet is het voorbij. Terwijl ik al schrijvend aan dit

voorwoord terugdenk aan alle dingen die ik heb geleerd, alle mensen met wie ik heb

samengewerkt en aan alle hoogte- en dieptepunten die we hebben meegemaakt, kan

ik niets anders denken dan dat vier jaar veel te kort was. Er valt nog zo veel te leren,

zoveel werk te doen en nog zoveel mee te maken. Dit is een compliment voor alle

mensen die, direct of indirect, een rol hebben gespeeld in het tot stand komen van

dit proefschrift en mijn promotie, maar ook in de �jne tijd die ik in Nijmegen heb

doorgebracht.

Dit proefschrift is onderdeel van een samenwerkingsproject tussen verschillende

afdelingen en er waren veel personen bij betrokken. Er waren natuurkundigen, chemici

en biochemici, experimentelen en theoreten. Dat is een type omgeving waar ik mij

prettig in voel; het delen van kennis en kunde door mensen met verschillende achter-

gronden. Dit heb ik altijd proberen op te zoeken, zowel tijdens mijn stages en pro-

motie als in mijn huidig werk. Dit maakt mijn positie soms wat ambivalent voor

anderen; ben ik nu een chemicus, een fysicus, een fysisch chemicus of een chemisch

fysicus? Voor een fysicus ben ik een chemicus, voor een chemicus een fysicus. Soms

is het nodig en ook handig om een dergelijk stempel op te drukken, maar eigenlijk

is het irrelevant, net zo als het verbinden van een waarde-oordeel aan een dergelijk

stempel. We zijn onderzoekers, we streven hetzelfde doel na en gebruiken dezelfde

methoden. En waar onderzoekers met verschillende achtergronden bij elkaar komen

kunnen mooie, leuke en interessante dingen kunnen ontstaan. De trekkers van dit

project hebben een dergelijk omgeving gecreëerd. Een omgeving waarin ik mij, zoals

gezegd, bijzonder heb thuis gevoeld. Hiervoor mijn dank en wat mij betreft veel lof.

Er zijn veel mensen betrokken geweest in dit project. Ik wil iedereen bedanken

die direct of indirect een rol hebben gespeeld in het gehele project. Een aantal wil ik

graag bij naam noemen.

Maurits, het was even spannend aan het begin; twee volslagen vreemden die vier

jaar lang zeer nauw zouden gaan samenwerken. Maar vanaf het eerste moment klikte

het tussen ons en ging het samenwerken als vanzelf. Hoewel afzonderlijk verschillend

van stijl, complementeerden wij elkaar daar waar nodig. Dit proefschrift zie ik dan

ook niet als mijn werk, maar als ons werk en daar ben ik erg trots op. We zijn toch een



viii

beetje collega�s gebleven nu we beiden �iets met zonnecellen�doen, ook al werken en

wonen we een �ink aantal kilometers van elkaar. Maar we zijn bovenal ook vrienden

geworden. Ik wens jou en Saskia veel succes en plezier in de toekomst. Bedankt voor

alles.

Elias, bedankt voor de mogelijkheden die je mij geboden hebt, zowel tijdens mijn

afstudeerstage als tijdens mijn promotietijd. Je oprechte betrokkenheid, aanstekelijk

enthousiasme en scherp inzicht zijn altijd inspirerend voor mij geweest.

Willem, je bent een bijzonder persoon in de positieve zin van het woord. Ik heb veel

van je geleerd en prettig samengewerkt tijdens de (werk)colleges en computerpractica,

hiervoor mijn dank. Ik hoop dat je gezondheid je niet teveel in de weg zal staan om

ook toekomstige studenten en promovendi enthousiast te maken voor het vak.

Jan Kees, een groot en uniek laboratorium van de grond krijgen en draaiend

houden terwijl er dan ook nog eens van die �zweverige�kristalgroeiers langs komen,

verdient veel respect. Bedankt voor de begeleiding, met name het blijven wijzen op

het scherp en duidelijk formuleren van het werk, zowel in presentaties als publicaties.

Peter, je enthousiaste maar nuchtere, geduldige en altijd stimulerende inbreng

tijdens mijn promotietijd waren van groot belang. Hiervoor mijn dank.

Wim, bedankt voor de niet te onderschatten bijdrage aan het project. Ook be-

dankt voor het zorgvuldig doorlezen van mijn manuscript.

Katsuo, thank you for your hospitality during our visit to Japan. Thank you for

the fruitful coöperation and being part of the manuscript committee.

Hugo, hoewel niet direct betrokken in het project heb ook jij een belangrijke rol

gespeeld. Je gevoel voor humor, je altijd open deur en je volkomen eigen stijl op de

afdeling werden zeer gewaardeerd. Ook dank voor de prettige samenwerking tijdens

het projectpracticum.

Jan van Kessel, bedankt voor alle hulp, maar ook voor de gezelligheid.

Jan Los, bedankt voor alle discussies en hulp.

Elisabeth, Martha en Ine, bedankt voor alle hulp, het regelwerk, administratieve

zaken en de gezelligheid.

Mijn studenten: Saskia, Gerbe, Jordy en �snu¤elaars�Maaike, Daniel, Max en

Tristan. Bedankt voor jullie bijdragen. Ik hoop dat ik jullie net zo veel heb kunnen

leren als jullie mij. Veel succes met jullie toekomst.

Ramon, Jos en alle medewerkers van TZ, bedankt voor de technische bijstand en

het maken van de microscopen.

Stef en Jos en Igor, bedankt voor de hulp, begeleiding en geduld voor het leren

werken en aan de gang houden van de magneten.
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1.1 Protein crystallization

Proteins are a group of bio-macromolecules that play an important role in life. They
act as building blocks, catalysts, transporters and regulators in all living organisms
and even some non-living objects like viruses. Proteins are large, complicated mole-
cules that come in a variety of sizes, shapes, structures and functions. However,
proteins can be very speci�c; a small mutation in structure can cause the whole
protein molecule to dysfunction, sometimes with lethal consequences. That is why
understanding of the structure-function relationship of protein molecules is highly
relevant to biology, biochemistry and medical and pharmaceutical science, from both
an academic and an industrial point of view [1].
To understand the structure-function relation, the molecular structure of a protein

molecule needs to be known. The most comprehensive method available for structure
determination for both small and large proteins is x-ray crystallography [2], for which
single crystals are required with adequate size and perfection. The step of obtaining
biological information from di¤raction data is by now almost automated, but the
bottleneck of the whole process is to obtain crystals of su¢ cient quality and size [1].

Figure 1.1: (a) Tetragonal hen egg-white lysozyme crystals and a spherulite. The
scalebar corresponds to 0.25 mm. (b) The crystal structure of lysozyme determined
by x-ray di¤raction.

Protein crystals can be grown in many di¤erent appealing shapes [3] (Fig. 1.1).
Unfortunately, esthetics are rarely an indication of the crystallographic quality. Al-
though it has a history of over 165 years [4], protein crystal growth has largely re-
mained a question of trial and error. Proteins are only stable in a narrow range
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of biochemical conditions and crystallization involves many variables, including the
solvent, bu¤er, precipitant, pH, temperature, concentrations and of course the pro-
tein itself. When a crystal is obtained, the high solvent content, the �exibility of
the molecules and the presence of disorder, various defects and impurities cause a
high background of di¤use scattering. Bragg peak intensities can be limited by small
domain and crystal size, and peak spreading due to slight variations in unit cell pa-
rameters and crystallographic orientation can occur. The quality of the di¤raction
data, and thus the quality of the structure determination, is therefore limited by the
crystal quality. This makes protein crystal growth very often the quality limiting step
in the process of structure determination of proteins.
Protein crystals are grown from solution, a process that involves nucleation, trans-

port of molecules and subsequent incorporation of these molecules into the growing
crystal (see [1] and references therein). To facilitate nucleation, highly supersaturated
solutions are required. As the crystal grows, it depletes the surrounding solution of
protein molecules and protein molecules will di¤use to balance the variations in con-
centration. If, however, the di¤usion of molecules cannot keep up with the rate of
incorporation of molecules into the crystal, a concentration gradient near the crystal
is formed. As the density of the solution varies with concentration, buoyancy pushes
the depleted solution upwards, forming convective �ows around the growing crystal,
evening out the variations in concentration. At the crystal interface, however, the
drag between the �owing solution and the crystal leads to a thin boundary layer
where �ows are very slow and a concentration gradient can persist. On top of the
crystal, this so called depletion zone detaches from the crystal and follows the con-
vective �ow, as can be seen in Fig. 1.2a. This convection- or growth plume, together
with the depletion zone, can be made visible with optical techniques like schlieren
microscopy, shadowgraphy or interferometry [5].
As the depletion zone is very thin, the growing crystal remains in close contact

with the highly supersaturated solution, which results in a relatively high growth
rate. A �rst attempt to improve the quality of the growing protein crystal could be
aimed at obtaining lower growth rates, hopefully decreasing the formation of defects
and lowering mosaïcity. This can for instance be done by replacing the nucleation
solution with one having a lower supersaturation or by adapting the supersaturation
by tuning the temperature. In practice, this can be problematic; protein crystals
are often too fragile to handle, accurate knowledge of solubilities is absent and the
amount of available material often limited.
Another factor that limits the quality of protein crystal is the presence of impurities
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Figure 1.2: (a) Buoyancy driven convection during protein crystal growth. Rising
depleted solution forms a convective �ow, indicated by the arrows, and leads to a
convection plume. (b) In the absence of gravity, convection is suppressed and mass
transfer occurs by di¤usion: an extended depletion zone is formed.

like dimers and denaturated molecules in the growth solution. If these impurities
become incorporated into the crystal, they can act as a source of defects and sometimes
even block growth [1]. Extensive puri�cation of the solutions however, can lead to
signi�cant loss of material which is undesirable, while impurities can still be formed
after puri�cation.
Suppressing buoyancy driven convection would help to overcome these problems

[6]. If convection is absent, molecules can only be transported to the crystal by
di¤usion, which is much slower than mass transport by convection. In the absence of
convection, an extended depletion zone will form around the crystal and the growth
rate will decrease (Fig. 1.2b). As impurities are often larger than the growth units,
they will di¤use even slower, resulting in a decreasing impurity incorporation rate [7].
So, crystal growth under conditions were di¤usion dominates mass transport instead
of convection can lead to an improvement of crystal quality.
Mass transport by convection and di¤usion depend on factors like the viscosity

of the solution, the dimensions of the growth container, the density of the solution,
the di¤usion coe¢ cient of the protein and the gravitational acceleration. This can be
quanti�ed by using the dimensionless Rayleigh number. The Rayleigh number Ra is
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a measure of the ratio of convective to di¤usive mass transport [8], and is given by

Ra � L3g

�D
, (1.1)

with g the gravitational acceleration, � the kinematic viscosity,  the dimensionless
density di¤erence, D the di¤usion coe¢ cient andL a characteristic length. If the
Rayleigh number is high, transport of protein molecules is primarily in the form of
convection while for low values, mass transport is limited by di¤usion. To obtain a
low Rayleigh number, one can change � by using highly viscous growth solution, like
growing crystals in gels [9, 10]. Or one can decrease L by using very small growth
volumes, as in micro�uidics [11]. Another possibility that has received a lot of at-
tention the past decades, is reducing the gravitational acceleration. In the absence
of gravity, there is no driving force for buoyancy driven convection [6]. An added
bene�t of protein crystal growth in the absence of a gravitational acceleration is that
sedimentation and subsequent incorporation of microcrystallites will not occur [6].
Growing crystals in the absence of gravity is thus expected to deliver better quality
crystals than crystals grown under the same conditions, but under normal gravity.
The scienti�c and pharmaceutical drive for better crystals has led to signi�cant in-
vestments in both time and money to persue zero gravity protein crystal growth in
space.

1.2 Protein crystal growth in microgravity

To obtain a signi�cant reduction of the gravitational acceleration, one is required
to go far away from earth. For example, to reduce the gravitational acceleration
to one millionth of that on earth, one has to travel about 40 earth-sun distances
from earth [6]. Another method to achieve weightlessness is to bring the object in
free fall. This can be done by parabolic �ights, droptowers or sounding rockets, but
the time scales are in the order of seconds to minutes, much too short to facilitate
protein crystal growth, which takes hours to days. An object that is orbiting the
earth, however, is experiencing free fall for as long as the object is in orbit, which
can be days to many years. The amount of gravity an object in orbit experiences is
measured in units of g, the gravitational acceleration on earth, being 9.8 m2/s. The
centre of mass of the orbiting object feels 0g. Away form the centre of mass, residual
accelerations occur up to 10�3g: NASA refers to this in terms of microgravity, where
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�micro�has the meaning of �small�[12].
The �rst protein crystal growth experiment in microgravity was performed by

Littke in 1981 [13], with a sounding rocket. The �rst growth experiments in orbit
were performed in Space Shuttle mission STS-9 in 1983 [6]. Since then, many exper-
iments have been performed on board Space Shuttle missions and space stations like
Mir and ISS. The results have been classi�ed as �signi�cant� [14] or �marginal� [15],
depending on one�s point of view. Most growth experiments were aimed at obtain-
ing crystals, but in recent years, there has been more focus on investigating what
actually happens during microgravity crystal growth. Crystal growth was monitored
by optical microscopy, schlieren microscopy and interferometry to see the e¤ects of
reduced gravity on the hydrodynamic conditions, growth rate and impurity incorpo-
ration (see for examples Refs. [16�18]). Unfortunately, the question whether protein
crystal growth in space results in better crystals is still not conclusively answered,
and more experiments are required.
There are a number of inherent drawbacks to growth experiments in space. There

are for instance the huge launch costs ($10.000-20.000 per kilo [19]), the low frequency
of Space Shuttle �ights (to date only 7 since the crash of the Colombia in 2003 [19]) and
the fact that, while in space, the experiments are inaccessible to the experimenters.
Another problem that recently has received much attention, are residual accelerations,
and subsequent movements of crystals and distortions of depletion zones, referred to
as g-jittering [6]. These are caused by e.g. exercising astronauts, course corrections,
venting etc., which can ruin the bene�cial e¤ects of microgravity. It has been stated
that g-jittering can be hold responsible for many negative results in microgravity
protein crystal growth [6]. All these drawbacks have led protein crystal growers to
look for an alternative method to suppress convection during crystal growth. In this
thesis, two possible alternatives are investigated; the use of gradient magnetic �elds
and the BAD method.

1.3 Protein crystal growth in high magnetic �elds

1.3.1 Diamagnetic levitation

In 1991, Beaugnon and Tournier reported levitating diamagnetic organic material in
gradient magnetic �elds [20]. They stated that: "Our technique can be used to provide
a (...) microgravity environment for the elaboration of a wide range of materials."
Most organic materials, like proteins, are diamagnetic, meaning a relatively small
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and negative magnetic susceptibility. If introduced into a gradient magnetic �eld, a
diamagnetic material experiences a force that repels it from a higher �eld. If this
force is equal in size but opposite in direction to the gravitational force, there is a
balance of forces and the object levitates. In equations:

Fnet = Fm + Fg =
�

�0
BzB

0

z � �g = 0, (1.2)

with Fnet, Fm, and Fg the net, magnetic and gravitational force per unit volume
respectively, in the z-direction, � the volume magnetic susceptibility, �0 the magnetic
permeability of the vacuum and BzB

0

z the product of magnetic �eld and magnetic
�eld gradient in the z-direction [21]. Note that it is not just the magnetic �eld that
is important, but its product with the �eld gradient. Eqn. 1.2 can be satis�ed if

BzB
0

z =
�

�
�0g, (1.3)

which is known as the levitation condition. If this condition is ful�lled, objects can
levitate, just like in microgravity. A famous example is the levitating frog, at the High
Field Magnet Laboratory at the Radboud University Nijmegen [21] (Fig. 1.3). Until
recently it was thought that levitating the growth solution using gradient magnetic
�elds was su¢ cient to create a microgravity-like condition and to suppress convection.
A number of crystallization experiments have been performed under levitation condi-
tions, some claiming improved crystal quality, e.g. [22�26]. However, the assumption
that magnetic levitation creates a microgravity-like condition for convection, is not
correct. Although it was already shown before that thermal convection can be sup-
pressed for both dia- and paramagnetic �uids [27,28], the proper method to suppress
convection during crystal growth was only recently described by Ramachandran and
Leslie [29]. They showed that it instead of the bulk magnetic susceptibility and solu-
tal density it is necessary to exploit the concentration dependence of of the magnetic
susceptibility and of the solutal density.

1.3.2 Suppression of convection

The net force per unit volume along the z-direction on an object in a gradient magnetic
�eld is given by Eqn. 1.2. For convection, not the absolute force but the di¤erence in
force between di¤erent volumes of solution is important. This e¤ective force is given
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Figure 1.3: A frog levitating in a gradient magnetic �eld at the HFML, seen from the
top.

by:

Feff =
��

�0
BzB

0

z ���g, (1.4)

with �� and �� the di¤erence in the density and the volume magnetic susceptibil-
ity, respectively, between di¤erent solutal volume elements. For small variations in
concentration, the density and susceptibility can be written as � (c) = �c + �0 and
� (c) = �c+ �0, with � and � the coe¢ cients of the linear concentration dependence
of � and �, respectively. Eqn. 1.4 now reduces to

Feff =
��c

�0
BzB

0

z � ��cg. (1.5)

To achieve damping of convection, the force acting on di¤erent volume elements of
the growth solution should be equal, i.e. Feff = 0, leading to the following condition
for suppression of convection:

BzB
0

z =
�

�
�0g. (1.6)
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The net e¤ective acceleration the solution experiences is given by

geff = �
Feff
��

=
Feff
��c

= g

"

1� �

�

BzB
0

z

�0g

#

. (1.7)

Now we can de�ne a dimensionless e¤ective gravity as a measure of the net force
di¤erence acting on the growth solution:

Geff =
geff
g

=

"

1� �

�

BzB
0

z

�0g

#

, (1.8)

and the Rayleigh number becomes

Ra =
Geff L

3g

�D
. (1.9)

Eqns. 1.8 and 1.9 o¤er means to tune the e¤ective gravity and Rayleigh number
by changing BzB

0

z: This makes this technique unique with respect to others, because
the amount of convection can be tuned. Not only is it possible to completely suppress
convection, but one can also allow for some convection, if desired. It is even possible
to increase the amount of convection (Geff > 1) or use a negative e¤ective gravity.
None of this is possible in space, gels, micro�uidics or using other techniques.

1.4 The BAD method

The BAD method is introduced in this thesis as another method to suppress con-
vection during protein crystal growth. Where gradient magnetic �elds are used to
compensate for the e¤ects of gravity, the BAD method makes use of gravity in an
upside-down geometry, to achieve the same. In Fig. 1.4, a growing crystal is located
at the top of a closed growth cell �lled with supersaturated solution. During growth
of the crystal, the solution near the crystal becomes depleted of solute. As the den-
sity of the depleted solution decreases, it feels an upward buoyant force. For a freely
suspended crystal buoyancy driven convection would set in, but for the upside down
geometry there is no room for a convective �ow to develop. The depleted solution is
forced to accumulate at the top of the cell and fresh material has to be supplied from
below the crystal. Under the in�uence of buoyant forces, the depleted solution forms
a horizontally strati�ed depletion zone, expanding downwards, while convective �ows
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Figure 1.4: Crystal growth in the upside-down geometry. A growing crystal is at-
tached to the top of a growth cell. Depleted solution is forced to accumulate at
the top because of buoyancy, leading to di¤usion limited growth. Also, sedimenting
microcrystals will not be incorporated into the growing crystal.

cannot form. We will call this a Buoyancy Assisted Depletion (BAD) zone. During
the BAD zone formation, mass transport towards the crystal becomes increasingly
more di¢ cult, and the growth of the crystal becomes di¤usion limited. On top of
that, due to di¤usional puri�cation, impurity incorporation rates are reduced and,
for obvious reasons, sedimenting microcrystals will not be incorporated. Whereas
conventionally it requires suppression of gravity to achieve these conditions, using the
upside down geometry it is possible to harness gravity to achieve the same.
In terms of the Rayleigh number, the BAD method is described by the charac-

teristic length L. For a given crystal growth geometry, the characteristic length is a
measure of the most relevant length scale, for which in most cases the size of the crys-
tal is taken. If, however, the dimensions of the growth container are very small, as in
micro�uidics [11], drag becomes signi�cant and the amount of convection is reduced.
In that case, the size of the growth container has to be taken for L. A drawback of this
method is the small volume of growth solution, resulting in very small crystals. For
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the BAD method, a normal sized container can be used, but d, the distance between
the crystal and the nucleation substrate becomes very small, and buoyancy driven
convection can not develop. Now, the Rayleigh number can be de�ned as

Ra =
gd3

�D
. (1.10)

If d becomes small, the Rayleigh number will be small, convection will be suppressed
and mass transport limited by di¤usion, just as would occur in microgravity.

1.5 This thesis

In this thesis, the possibilities of protein crystal growth using gradient magnetic �elds
or the BAD method as alternatives for crystal growth in microgravity are explored.
This is done using a combination of experiments, theory and simulations, investigating
crystal growth, �uid dynamics and mass transport, while focussing on applicability
as well as the fundamentals.
After discussing some experimental details in chapter 2, part 1 of this thesis covers

the use of gradient magnetic �elds during crystal growth from solution. In chapter
3, a proof of principle of suppression of convection using gradient magnetic �elds is
demonstrated, using nickel sulfate as a model system. In chapter 4, the �uid dynamics,
mass transport and growth rate behavior in gradient magnetic �elds are studied in
detail. In chapter 5 it is shown that, though experimentally challenging, convection
can also be suppressed for growth of the diamagnetic protein lysozyme. In chapter
6, a closer look is taken at the behavior of the Rayleigh number at low values of
the e¤ective gravity, both theoretically and by using simulations. Simulations are
also used in chapter 7 to get a more complete understanding of the observations in
chapter 3 to 5. In part 2, the BAD method is introduced. In chapter 8, the formation
of a buoyancy assisted depletion zone and its e¤ect on the growth of sodium chlorate
crystals is investigated. In chapter 9, the BAD method is applied to hen egg-white
lysozyme crystal growth.



16 Chapter 1



Bibliography

[1] A. McPherson, Crystallization of biological macromolecules (Cold Spring Harbor
Laboratory Press, Cold Spring Harbor, 1999)

[2] J. Drenth, Principles of protein X-ray crystallography (Springer-Verlag, New
York,1994)

[3] See for instance http://www.hamptonresearch.com/stu¤/Gallery.aspx

[4] F. L. Hunefeld, Der Chemismus in der tierischen Organisation (Leipzig, 1840)

[5] P. J. Schlichta, Journal of Crystal Growth 76, 656 (1986)

[6] E. H. Snell, J. R. Helliwell, Reports on Progress in Physics 68, 799-853 (2005)

[7] C.P. Lee, A.A. Chernov, Journal of Crystal Growth 240, 531 (2002)

[8] V. G. Levich, Physicochemical Hydrodynamics (Prentice-Hall international series
in the physical and chemical engineering sciences, Englewood Cli¤s,1962)

[9] M. C. Robert, K. Provost and F. Lefaucheux, Crystallization of nucleic acids and
proteins: a practical approach, edited by A. Ducruix and R. Giegé (IRL Press,
Oxford, 1999)

[10] J. M. García-Ruiz, J. Drenth, M. Riés-Kautt and A. Tardieu, A world without

gravity - research in space for health and industrial processes, edited by S. Seibert

et al. (ESA, Noordwijk, 2001)

[11] D. C. Carter, P. Rhodes, D. E. McRee, L. W. Tari, D. R. Dougan, G. Snell, E.
Abola and R. Stevens, Journal of Applied Crystallography 38, 87 (2005)

[12] NASA educational brief EB-1997-02-119-HQ, The mathematics of microgravity

[13] W. Littke and C. John, Science 225, 203 (1984)

[14] C. E. Kundrot, R. A. Judge, M. K. Pusey and E. H. Snell, Crystal Growth &
Design 1, 87 (2001)

[15] T. Reichhardt, Nature 404, 114 (2000)

17



18 Chapter 1

[16] T. J. Boggon, N. E. Chayen, E. H. Snell, J. Dong, P. Lautenschlager, L. Potthast,
D. P. Siddons, V. Stojano¤, E. Gordon, A. W. Thompson, P. F. Zagalsy, R. C.
Bi and J. R. Helliwell, Philosophical Transactions of the Royal Society of Londen
A 356, 1045 (1998)

[17] Otálora F., Garcia-Ruiz J.M., Carotenuto L., Castagnolo D., Novella M.L., Cher-
nov A.A., Acta Crystallographica D 58, 1681 (2002)

[18] M. Pusey and R. Naumann, Journal of Crystal Growth 90, 105 (1988)
[19] http//:www.nasa.gov
[20] E. Beaugnon and R. Tournier Nature 349, 470 (1991)
[21] M. V. Berry and A. K. Geim, European Journal of Physics 18, 307 (1997)
[22] N. I. Wakayama, Crystal Growth & Design 3, 17 (2003)
[23] M. Motokawa, M. Hamai, T. Sato,I. Mogi, S. Awaji, K. Watanabe, N. Kitamura

and M. Makihara, Physica B 294, 729 (2001)
[24] M. Hamai, I. Mogi, M. Tagami, S. Awaji, K. Watanabe and M. Motokawa,

Journal of Crystal Growth 209, 1013 (2001)
[25] M. Tagami, M. Hamai, I. Mogi, K. Watanabe and M. Motokawa, Journal of

Crystal Growth 203, 549 (1999)
[26] D. C. Yin, N. I. Wakayama, K. Harata, M. Fujiwara, T. Kiyoshi, H. Wada, N.

Niimura, S. Arai, W. D. Huang and Y. Tanimoto, Journal of Crystal Growth
270, 184 (2004)

[27] Braithwaite D., Beaugnon E., Tournier R., Nature 354, 134 (1991)
[28] I. Mogi, C. Umeki, K. Takahashi, S. Awaji, K. Watanabe and M. Motokawa,

Japanese Journal of Applied Physics 42, L715 (2003)
[29] N. Ramachandran and F. W. Leslie, Journal of Crystal Growth 274, 297 (2005)



Chapter 2

Experimental

19



20 Chapter 2

2.1 High Field Magnet Laboratory

The manipulation of diamagnetic materials requires high values for the product of
magnetic �eld and magnetic �eld gradient because of their small magnetic suscepti-
bility. As for most organic materials the ratio �

� is constant and the required BzB
0

z

for levitation is around �1500 T2m�1 [1]. For suppression of convection, even higher
gradients are needed. Achieving these high gradients is not trivial, but possible at
high magnetic �eld laboratories like the High Field Magnet Laboratory (HFML) at
the Radboud University Nijmegen [2], where all the magnet experiments described in
this work have been performed. Two types of magnets at the HFML can be used for
levitation and microgravity crystal growth; a 20 T Bitter type magnet with a max-

imum
���BzB

0

z

��� of 2300 T2m�1, referred to as Cell 2, and a 33 T Bitter type magnet

with a maximum
���BzB

0

z

��� of 6660 T2m�1, referred to as Cell 5.
In a perfect microgravity growth experiment, Geff is zero throughout the entire

growth cell volume. If this is not the case, residual convection may limit the possi-
ble bene�cial e¤ects of microgravity crystal growth. The optimum position for the
growth cell in the magnet therefore corresponds with the z-value where the variation
in the magnetic force is minimal, thus where the derivative of BzB

0

z equals 0. For
diamagnetic materials, the magnetic susceptibility � is negative, leading to a nega-
tive BzB

0

z to ful�ll Eqn. 1.6 and experiments are performed in the upper part of the
magnet. For paramagnetic materials, both � and BzB

0

z are positive, and experiments
are performed in the lower part of the magnet.

2.1.1 Cell 2

Cell 2 is a water-cooled Bitter type, 5.8 MW magnet with a maximum �eld of 20
Tesla and a room temperature bore of 32 mm. A double walled tube connected to a
thermostatic waterbath can be inserted into the bore to control temperature. This
reduces the bore diameter to 28 mm. Fig. 2.1a show the �eld pro�le and �eld gradient,
Fig. 2.1b the product of both. The �eld pro�le is symmetric around the �eld center.
BzB

0

z has extrema at 63.6 mm from the �eld center. At these positions, Bz = 0:75B0
and B

0

z = �10:24Bz. BzB
0

z, and thus the e¤ective gravity, can be tuned by varying

B0 with
���BzB

0

z

��� having a maximum value of 2300 T2m�1. These are the optimum

positions for suppression of convection. From Fig. 2.1b it can be seen that BzB
0

z

varies more or less parabolically around the optimum position.
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Figure 2.1: (a) Bz, B
0

z and (b) BzB
0

z for Cell 2.

2.1.2 Cell 5

Figure 2.2: (a) Bz, B
0

z and (b) BzB
0

z for Cell 5.

To obtain higher values of BzB
0

z, Cell 5 was used. Cell 5 is a Bitter type, 17 MW
magnet with a �eld maximum of 33 Tesla and a room temperature bore of 32 mm. A
similar thermostatic tube as for Cell 2 can be inserted in the bore. The �eld pro�le,
gradient and product of both are given in Fig. 2.2. The optimum position is at 54.3
mm from the �eld center, where Bz = 0:805B0, B

0

z = �9:44Bz and the maximum���BzB
0

z

��� is 6660 T2m�1. From Fig. 2.2b, it can again be seen that BzB
0

z varies more

or less parabolically around the optimum position.
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2.2 Optical techniques

The concentration gradients in the depletion zone and convection plume are invisible
to the naked eye. However, they are accompanied by variations in the refractive index
that can be visualized by phase-sensitive optical techniques. Such techniques can be
used to in-situ observe the development of the depletion zone and growth plume as
well as the transitions that occur if convection is suppressed. The two techniques
used in the work described in this thesis are schlieren microscopy and shadowgraphy.
As commercially available microscopes could not be used because of size limitations,
custom microscopes were constructed for use in Cells 2 and 5. In the following sections,
the schlieren and shadowgraphy techniques will be discussed.

2.2.1 Schlieren microscopy

Schlieren microscopy is an optical technique that visualizes gradients in refractive
index, and can thus be used to observe gradients in concentration [3]. According to
a design by Toepler [4], a slit light source combined with a condenser lens is used to
pass a collimated beam through the sample. In the back focal plane of the objective
lens, the Fourier transform of the object convolutes with the projection of the slit.
There, a knife edge is placed, parallel to the slit, �ltering out half of the Fourier
components in the x-direction, including part of the 0th order peak. After inverse
transformation by the projective lens, gradients in refractive index are transformed
in intensity variations on the projection screen, according to [3]

I(x; y) _

dZ

0

@n(x; y; z)

@x
dz _

dZ

0

@c(x; y; z)

@x
dz, (2.1)

with I(x; y) the intensity in the (x; y)-plane, and @n(x;y;z)
@x and @c(x;y;z)

@x the gradient
in refractive index and concentration respectively, perpendicular to the knife edge,
integrated along the z-direction over a distance d. Schlieren microscopy is a relatively
easy, sensitive and robust technique, by which concentration gradients in the depletion
zone and convection plume can be readily visualized. Fig.2.3 shows an example of
a schlieren image of a growing KH2PO4 crystal. On the left of the crystal, the
concentration gradient is negative and the image is darker than the background, while
on the right, the gradient is positive and the image is lighter than the background.
Above the crystal, the convection plume is visible.
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Figure 2.3: A schlieren image of a growing KH2PO4 crystal. The depletion zone and
growth plume can be clearly seen. The black line at the bottom of the crystal is a
copper wire to which the crystal is glued for support,

A long working distance schlieren microscope was specially designed and con-
structed for Cell 2 to �t our demands as well as the geometrical restrictions imposed
by the magnet. A schematic drawing is given in Fig. 2.4a. In order to observe the
transition from convection dominated to di¤usion dominated crystal growth in the
magnet, the microscope should give a side view of the crystal, with a large enough
�eld of view to see the crystal as well as the depletion zone and the convection plume.
On the other hand, because it is not possible to place a CCD-camera inside the mag-
net, the distance between sample and camera will be relatively large. Also, the bore
of the magnet limits the size of the optical components inside the magnet. All the
optics, except the light source, the projective zoomlens and the CCD-camera, are
mounted on an insert and placed inside the magnet bore (Fig. 2.4b). All components
inside the bore are mounted on anodized aluminium �anges connected by two stain-
less steel rods, which are attached to a height adjustable head (A), directly �xed to
the thermostatic tube for mechanical stability. The light source is a Schott KL1500
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Figure 2.4: (a) A schematic drawing of the schlieren microscope inside the magnet.
(b) A photograph of the schlieren microscope insert.

cold light source. Using a �ber light-guide (B), the light is projected on a 1 mm
slit (D), via a condenser lens and a di¤user (C). A collimated beam was obtained by
placing the slit in the focal plane of a 12.5 mm diameter achromatic lens (E) with a
focal distance of 80 mm. Using two mirrors (F), the beam is guided through a 7.5
x 7.5 x 14 mm inner diameter, 10 x 10 x 15 mm outer diameter glass cuvette from
Hellma, containing the sample. The objective lens (achromat with diameter 12.5 mm,
focal distance 80 mm) has a numerical aperture of 0.078 (G). The knife edge (H) is
a thin copper plate that has to be aligned beforehand. The projective zoomlens is a
70-200 mm F2.8 photographic zoomlens from Sigma. The images are recorded using a
Nikon DS-5M-L1 CCD camera system. To overcome vignetting of the light beam, all
components, except the sample cell, were placed under a small angle of about 2� with
respect to the bore central axis, to assure that the optical axis would exit through
the middle of the bore. For experiments with diamagnetic materials, negative �eld
gradients are required, i.e. above the �eld centre, while for paramagnetic materials,
positive gradients are required, i.e. below the �eld centre. The schlieren microscope
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can be used in both cases, by swapping and rotating the components above and
below the sample holder. The microscope can also be used in a bright �eld mode, by
removing the knife edge, and in a dark �eld mode, by blocking the entire 0 th order
peak or more. In addition to visualizing the depletion zone and the growth plume,
also the size of the crystal can be recorded to determine the growth rate and test
particles can be observed to visualize convective �ows.

2.2.2 Shadowgraphy

Figure 2.5: (a) focussed image of a growing KDP crystal. No plume is visible. (b) If
the crystal is imaged out of focus (shadowgraphy), the growth plume becomes clearly
visible, although the crystal becomes blurred.

A light ray passing through a transparent object with a gradient in refractive
index, like for instance a convection plume, is de�ected according to [3]

"x =
1

n0

Z
@n(x; y; z)

@x
dz, "y =

1

n0

Z
@n(x; y; z)

@y
dz , (2.2)

with "x and "y the de�ection angles in the x and y-direction, n0 the refractive index of
the surrounding medium and @n(x;y;z)

@x and @n(x;y;z)
@y the gradient in refractive index. If

we place such an object between a light source and a projection screen, the shadow of
the object will show variations in intensity. This is because the de�ected ray reaches
the projection screen displaced from its original position. There, it contributes extra
intensity, while its previous position su¤ers an intensity de�cit. The total intensity
re�ects the second order derivative of the refractive index, though this only holds for
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Figure 2.6: (a) A schematic drawing of the shadowgraphy microscope inside the
magnet. (b) A photograph of the shadowgraphy insert.

simple cases. A nice example is the shadow of the hot air rising above a candle cast
upon a white table cloth.
If this concept is combined with microscopy, it can be used to observe convection

plumes during crystal growth. This can be done by looking at the shadow of plume,
instead of the plume itself, i.e. placing the growing crystal out of focus. If the crystal
is placed in focus, there will be a sharp image of the crystal, but the plume and
depletion zones cannot be seen. If the crystal is placed out of focus, the crystal
will become blurred, but the plume will become visible (Fig. 2.5). If the cell is
placed more out of focus, intensity variations caused by smaller angles will come up,
thus increasing sensitivity. However, the crystal will become more blurred and the
contrast will decrease. Possible intensity variations caused by the depletion zone will
be overwhelmed by the blurring of the crystal, but convection plumes can be made
clearly visible. Shadowgraphy can be done in the "real mode", where the shadow
of the crystal is placed in the focal plane of the objective lens, or in the "virtual
mode", where the focal plane is placed behind the crystal, thus imaging the virtual
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shadow [3]. Virtual shadowgraphy often gives the best results for small refractive
index gradients. Although shadowgraphy does not deliver the nice and sharp images
schlieren microscopy does, its simplicity and sensitivity make it a perfect tool to
qualitatively observe the transition from convection-dominated to di¤usion-dominated
crystal growth.
A shadowgraphy microscope insert with a very long working distance was designed

and constructed for use in Cell 5, given schematically in Fig. 2.6a. Again, all com-
ponents inside the bore are mounted on anodized aluminium �anges connected by
two stainless steel rods (Fig. 2.6b), which are attached to a height adjustable head
(A), directly �xed to the thermostatic tube for mechanical stability. Using a �ber
light-guide (B), the light of a Schott KL1500 cold light source is projected on a 75 �m
pinhole (D) via a condenser lens and a di¤user (C). A collimated beam was obtained
by placing the pinhole in the focal plane of a 12.5 mm diameter achromatic lens (E)
with a focal distance of 80 mm. Using two mirrors (F), the beam is guided through a
glass cuvette containing the sample. The beam is guided out of the bore and towards
the objective lens, an achromat with a diameter of 30 mm, a focal distance of 80 mm
and a numerical aperture of 0.18. The projective zoomlens is a 70-200 mm F2.8 pho-
tographic zoomlens from Sigma. The images are recorded using a Nikon DS-5M-L1
CCD camera system.
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Part I

Gradient magnetic �elds
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Chapter 3

Suppression of convection

during crystal growth of

NiSO4�6H2O

A magnetic �eld was successfully used to suppress buoyancy driven convection during
solution growth of a NiSO4�6H2O crystal. The disappearance of the convection plume
and the expansion of the depletion zones, typical for crystal growth in the absence of
gravity, were observed with schlieren microscopy when the product of magnetic �eld
and �eld gradient corresponds to the condition that for all relevant concentrations
buoyancy is compensated by paramagnetic counterforces. We show both theoretically
and experimentally, that levitation of the growth solution is not the correct condition
to suppress convection�.

�Adapted from: P. W. G. Poodt, M. C. R. Heijna, K. Tsukamoto, W. J. de Grip, P. C. M.
Christianen, W. J. P. van Enckevort, J. C. Maan, E. Vlieg, Applied Physics Letters 87, 214105
(2005)
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3.1 Introduction

During crystal growth from solution, the solution near the crystal gets depleted of
solute, resulting in a lower concentration and density. Under the in�uence of gravity,
the solution with lower density rises, resulting in convective �ows around the crystal.
This leads to a convection plume and a boundary layer with a large concentration
gradient at the crystal interface. In systems where mass transport plays an important
role in crystal growth, a large concentration gradient leads to a high growth rate, often
negatively a¤ecting crystal quality, because defects are readily formed. Impurities are
easily incorporated, because the thin boundary layer only forms a small barrier for
fresh supplies of impurities from the bulk. Furthermore, gravity leads to sedimenta-
tion of microcrystals beyond a certain size, and can become incorporated into larger
crystals, increasing mosaïcity due to misorientation.
In crystal growth experiments under conditions where gravity is absent or very

small, buoyancy driven convection will no longer take place [1]. The convection plume
will disappear, the depletion zone surrounding the crystal will expand continuously
and growth is slowed down because of slower mass transport [2, 3]. Under such con-
ditions, impurities are less likely to incorporate [4, 5], and sedimentation will be dra-
matically reduced [6]. All of this can have bene�cial e¤ects on crystal quality. This
is of particular interest to protein crystal growers, because defects, impurities and
mosaïcity are detrimental for a structure determination using X-ray di¤raction. Ex-
periments in space are an option and many protein crystal growth experiments have
been performed on board space shuttle missions or space stations. The question if
growing protein crystals in microgravity actually leads to better crystal quality is still
open. Problems with space based experiments are that they su¤er from g-jittering [7],
are rare, very expensive, have a low accessibility and low controllability. That is why
e¤orts have been made to look for an alternative for space based experiments. One of
the more promising approaches is the suppression of convection by means of gradient
magnetic �elds. Until recently it was thought that levitating the growth solution us-
ing gradient magnetic �elds was su¢ cient to create a microgravity-like condition and
to suppress convection. A number of crystallization experiments have been performed
under levitation conditions, some claiming improved crystal quality e.g. Refs. [8�12].
However, the assumption that magnetic levitation creates a microgravity-like condi-
tion for convection, is not correct. Although it was already shown before that thermal
convection can be suppressed for both dia- and paramagnetic �uids [13,14], the proper
method to suppress convection during crystal growth was only recently described by
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Ramachandran and Leslie [15]. They show that it is necessary to exploit the concen-
tration dependence of the magnetic susceptibility as compared to the concentration
dependence of the solutal density. Schieber [16] already reported the e¤ects of high
magnetic �elds on the growth rate of paramagnetic Fe(NH 4)2(SO4)2�6H2O crystals
in 1967, although he was unaware of the likely cause of these e¤ects, which rely on
suppression of convection by a magnetic gradient.
Following a recent analysis of Ramachandran and Leslie [15] we �rst brie�y discuss

the forces acting on a body in a magnetic �eld. The net force Fz per unit volume
along the z-direction on an object in a gradient magnetic �eld in vacuum or air is the
sum of the magnetic force and the gravitational force given by [15,17]

Fz = Fmagnetic + Fgravity =
�

�0
BzB

0

z � �g, (3.1)

with B
0

z = dBz=dz, � the volume magnetic susceptibility, � the density, �0 the mag-
netic permeability of the vacuum, g the gravitational acceleration in the �z direction
and Bz the magnetic �eld along the z-direction. To achieve levitation, the magnetic
and gravitational force should cancel each other so that Fz = 0, from which the levi-
tation condition directly follows and which is demonstrated in levitating diamagnetic
materials like bismuth [18], droplets of ionic solution [9], glass [9] and even frogs [17].
However, to obtain a microgravity-like condition for crystal growth where buoyancy
driven convection is suppressed, levitation is not the correct condition. During crystal
growth from solution, local variations in concentration occur, and thus also local vari-
ations in density and magnetic susceptibility. To achieve suppression of convection
the force acting on di¤erent volume elements of the growth solution should be equal,
leading to the following condition:

BzB
0

z =
��

��
�0g, (3.2)

with �� and �� the di¤erence in the density and the volume magnetic susceptibility
respectively between di¤erent solutal volume elements. For small variations in the
concentration the density and susceptibility can be written as �(c) = �c + �0 and
�(c) = �c+ �0, with � and � the coe¢ cients of the linear concentration dependence
of � and � respectively. Eqn. 3.2 then becomes

BzB
0

z =
�

�
�0g. (3.3)
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� is usually positive, while for diamagnetic materials � is negative and of the order of
10�6, with � usually also negative and small. Therefore, BzB

0

z has to have a large and
negative value, mostly beyond the reach of conventional magnets. For paramagnetic
solutions, � is positive and much larger, which makes suppression of convection more
easy. Note that Eqn. 3.2 and 3.3 show that if � = 0 it is impossible to suppress
buoyancy driven convection, although it is possible to levitate the solution [12, 19].
The net e¤ective acceleration the solution experiences is given by

geff =
Feff
��

= �Feff
��c

= g

"

1� �

�

BzB
0

z

�0g

#

. (3.4)

Now we can de�ne a dimensionless e¤ective gravity as a measure of the net force
di¤erence acting on the growth solution:

Geff =
geff
g

=

"

1� �

�

BzB
0

z

�0g

#

. (3.5)

We thus have a simple way to vary Geff over a wide range, by tuning the applied
magnetic �eld.
A consequence of the previous analysis is that the criteria for levitation, to reduce

sedimentation and to suppress convection are di¤erent. So, unlike in real micrograv-
ity, suppression of convection, reducing sedimentation or levitation cannot be done
simultaneously using gradient magnetic �elds.

3.2 Experimental

For an experimental validation of this method for convection suppression during
growth, we investigated the growth of NiSO4�6H2O crystals from solution in a gra-
dient magnetic �eld. Nickel sulfate crystals and their solution are paramagnetic. In
order to calculate the conditions for convection suppression we measured the den-
sity and volume susceptibility as function of concentration range near the equilib-
rium concentration of 48.88 wt% at 25�C [20]. The density measurements were
performed by weighing a precisely determined volume of solution. The volume sus-
ceptibility measurements were performed using a MSB-Auto magnetic susceptibility
balance from Sherwood Scienti�c Ltd. Results for these measurements are shown in
Fig. 3.1. We determined the following values: � = 12:1 � 0:5 kgm�3wt%�1 and
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� = (3:8� 0:2)x10�6wt%�1.
With all parameter values known, we can calculate the required BzB

0

z to suppress
convection, stop sedimentation or to levitate the solution. We have estimated �crystal
to be 3.2x10�4 by extrapolation of the data in �gure 3.1. The values are shown in
Table 3.1, which also shows the predicted e¤ective g value for convection.
Our experiments were performed using a 20 Tesla 32 mm bore resistive magnet

with a calibrated �eld pro�le at the High Field Magnet Laboratory at the Radboud
University Nijmegen. The position in the magnet we chose to perform our experiment
has values of Bz = 0:434B0 and B

0

z = 14:555Bz, where B0 is the maximum �eld at
the center of the magnet. The samples were prepared by glueing small single crystal
fragments to a thin copper wire using superglue. These crystals were submerged in
a slightly supersaturated solution so that they grew to a size of about 1 mm. The
crystals were mounted in a glass cuvette with an inner volume of 7.5x7.5x15 mm3. A
long distance schlieren-type microscope was built to �t inside the magnet bore. With
schlieren microscopy it is possible to visualize concentration gradients in-situ because
the intensity is proportional to the gradient in concentration along the x-direction,
i.e. I _ @n=@x _ @c=@x [21�23]. The temperature inside the bore was set to 25 �C
and controlled by a double-walled tube connected to a thermostatic waterbath. As
growth solution, a 10.5% supersaturated nickel sulfate hexahydrate solution was used.

3.3 Results and discussion

Fig. 3.2 shows the main result of our experiment. At Bz = 0T , under normal
gravity conditions, a growth plume can be seen rising from the crystal (Fig. 3.2a).
At the sides of the crystal, zones of low and high intensities are visible. These are the

Table 3.1: The conditions to achieve suppression of convection, no sedimentation, or
levitation.

BzB
0

z (T
2m�1) BzB

0

z (T
2m�1) Geff

Condition Predicted Experimental (m s�1)
No �eld 0 1
Suppression of convection 39�3 37.5�0.5 0
No sedimentation 45�5 -0.1
Levitation 123�3 -2
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Figure 3.1: Density and susceptibility as function of concentration of an aqueous
NiSO4�6H20 solution.

depletion zones surrounding the crystal. The concentration gradient on the left side of
the crystal is positive and on the right side of the crystal negative, leading to higher
and lower intensities because of the schlieren principle. The average width of this
depletion zone in the x-direction is 0.25 mm, which is a normal value. When slowly
sweeping the �eld, we found that the growth plume disappeared for Bz = 1:6T . At this
point, an e¤ective microgravity condition was obtained with complete suppression of
convection. After a transient of a few seconds due to the disappearance of the plume,
the expansion of the depletion zones around the crystal took several minutes until
the depleted zone reached a more or less �xed width of about 1 mm, 4 times as wide
as at normal gravity conditions (Fig. 3.2b). Table 3.1 shows that the experimental
value for BzB

0

z as calculated from the �eld pro�le, agrees well with the predicted one
from � and �. From this we can conclude that linearization of �(c) and �(c) is a valid
approximation
Increasing BzB

0

z creates an inverse e¤ective gravity. In Fig. 3.2c, a schlieren
image is shown of the same growing crystal, but now with the growth plume directed
downwards. The applied �eld was Bz = 3:5T . The width of the depletion zones
decreased to approximately 0.25 mm again. We observed a similar situation for all
values of BzB

0

z well above the convection suppression. Thus for the condition of
magnetic levitation, convection is strong, and even enhanced as compared to normal
gravity (see Table 3.1).
In summary, we have reported for the �rst time that solutal convection during



Chapter 3 39

Figure 3.2: Schlieren images of growing nickel sulfate crystals. (a) Bz = 0T (normal
gravity). The crystal is black and the black stripe on the bottom-right is the copper
wire on which the crystal is �xed. The plume is vertical, but the camera was slightly
tilted. (b) After 5 minutes at Bz = 1:6T (suppression of convection) with an expanded
depletion zone. (c) Bz = 3:5T (inverse e¤ective gravity). The grayscale indicates the
concentration gradient, with white a large negative and black a large positive gradient.

crystal growth can be suppressed by gradient magnetic �elds, mimicking micrograv-
ity. We have found that the balance between magnetic and gravitational forces can
be made su¢ ciently precise that the depletion zone expands, as expected in the ab-
sence of gravity. This leads to a strong reduction in the e¤ective supersaturation, and
thus holds promise to yield better crystals. We have proven theoretically as well as
experimentally by in-situ schlieren microscopy that levitating the solution is not the
right condition to achieve this situation. Some earlier experiments performed under
levitation conditions can thus not have achieved convection suppression [12,19]. Using
gradient magnetic �elds combined with in-situ optical techniques like schlieren mi-
croscopy o¤ers a great opportunity to study the e¤ects of microgravity-like conditions
on crystal growth in general and protein crystal growth in particular. Although, un-
like in real microgravity, suppression of convection and reducing sedimentation cannot
occur simultaneously, the use of gradient magnetic �elds can o¤er a good alternative
for microgravity experiments in crystal growth.
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Chapter 4

Crystal growth of

NiSO4�6H2O in gradient

magnetic �elds

Using in-situ schlieren microscopy, we have studied the growth process of nickel sulfate
hexahydrate crystals in a gradient magnetic �eld under conditions where convection
is suppressed, in order to investigate if the same features occur as during microgravity
crystal growth. An expansion of the depletion zone with decreasing e¤ective gravity
was observed. If convection is suppressed, the depletion zone keeps expanding and
the crystal growth rate decreases signi�cantly, reaching a constant value. Although
there remains some residual �ow, it is very slow and does not a¤ect the depletion
zone. We �nd that homogeneity of the e¤ective gravity in the milligravity range is
su¢ cient to suppress convection. The results show that crystal growth in gradient
magnetic �elds is a good alternative for microgravity crystal growth in space �.

�Adapted from:P.W.G. Poodt, M.C.R. Heijna, P.C.M. Christianen, W.J.P. van Enckevort, W.J.
de Grip, K. Tsukamoto, J.C. Maan, E. Vlieg, Crystal Growth & Design 6 (2006) 2275
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4.1 Introduction

In this chapter we present the results of more detailed experiments on growing nickel
sulfate hexahydrate (NSH) crystals in a gradient magnetic �eld under conditions
where convection is suppressed. Also, the possibility of tuning the magnetic gradient
is explored as a new tool to control the crystallization process by varying the e¤ective
gravity and the corresponding convection �ow.

4.2 Experimental

4.2.1 Setup

The magnet used for these experiments is a 32 mm bore 20 T resistive magnet at the
High Field Magnet Laboratory at the Radboud University Nijmegen. A double walled
tube connected to a thermostatic water bath was inserted to control the temperature
between 30 and 35�C, reducing the e¤ective bore diameter to 28 mm. NSH crystals
were grown from a supersaturated solution, cleaved along the (001) planes and cut into
small pieces of approximately 2 x 2 mm wide and 1 mm thick. They were glued onto
a copper wire for support using superglue, mounted in the sample cell and submerged
in a supersaturated solution, ranging from 5% to 7% for the experiments described
here. The cell was sealed o¤ using Para�lm.

4.2.2 The position in the magnet

In a perfect microgravity growth experiment, Geff is zero throughout the entire
growth cell volume. If this is not the case, residual convection may limit the possible
bene�cial e¤ects of microgravity crystal growth. The optimum position for the growth
cell in the magnet corresponds with the z-value where the variation in the magnetic
force is minimal, thus where the derivative of BzB

0

z equals 0. Figure 4.1a shows
the �eld pro�le and its corresponding �eld gradient of the magnet we used in our
experiment, where z = 0 corresponds to the center of the magnet. From this pro�le,
the product of �eld and �eld gradient as function of z, BzB

0

z, was calculated, which
is given in �gure 4.1b. Because for paramagnetic compounds, a positive gradient is
required, only the values for negative z, i.e. below the magnet center, are plotted.
The derivative of BzB

0

z is zero for z = -63.6 mm and at this optimum position we
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Figure 4.1: (a) Field pro�le (solid line) and �eld gradient (dashed line) of the 20 T
magnet used in the experiments. (b) The product of �eld and gradient BzBz0. Arrow
1 shows the z-value of the optimum position where most experiments were performed
and arrow 2 the position where the e¤ect of inhomogeneity was studied.

have performed most of our experiments. The values for Bz and B
0

z for this position
are given by Bz = 0.75B0 T and B

0

z = 10.24Bz T/m, where B0 is the magnetic �eld
at the center of the magnet.

4.3 Results and discussion

4.3.1 Suppression of convection

Figure 4.2a shows a false color schlieren image of a growing NSH crystal at 0T, thus
at Geff = 1. The boundary layer with the depletion zone and the convection plume
are clearly visible. Geff can now be varied by sweeping the �eld. Figure 4.2b shows
the same crystal, but now for a BzB

0

z where Geff = 0, after 1.5 hrs. The convection
plume has disappeared and the depletion zone has expanded almost up to the wall of
the growth cell and is approximately 12 times as wide as for Geff = 1.
To calculate the value of BzB

0

z where Geff = 0, an accurate value for the ratio
between � and � is needed. Therefore, the solutal density and volume magnetic sus-
ceptibility were measured as function of concentration. The density was measured by
weighing a precisely determined volume of solution. The volume magnetic susceptibil-
ity was measured using a MSB-Auto magnetic susceptibility balance from Sherwood
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Figure 4.2: (a) False color schlieren image of a growing NSH crystal for Geff = 1.
The blue stripe on the right side is the copper wire on which the crystal is �xed.
The convection plume and thin depletion zone are visible. (b) False color schlieren
image of a growing NSH crystal for Geff = 0. The convection plume has disappeared
and the depletion zone has expanded. The color indicates the concentration gradient,
with red a large negative and blue a large positive gradient, according to the color
bar on the right. The scale bar corresponds to 0.5 mm.

Scienti�c Ltd. The measurements were performed for a limited concentration range
near the equilibrium concentration. For higher concentrations, measurements become
di¢ cult due to crystallization. The values determined in this way are� = 10.2 � 0.1
kg m�3 wt%�1 and � = (4.0 � 0.2) x 10�6 wt%�1. The corresponding value for BzB

0

z

then becomes 31 � 2 T2/m. Note that levitation of the solution is expected to occur
around 123 T2/m [1]. Figure 4.3 shows the experimentally determined values for
BzB

0

z to suppress convection for di¤erent concentrations, together with the value cal-
culated from � and �. We �nd that BzB

0

z varies slightly with concentration, ranging
from 30.8 to 31.6 T2/m. For all concentrations in �gure 4.3, the temperature was set
in such a way that the supersaturation was 7%. As we could not �nd a temperature
dependency for BzB

0

z, the variation in BzB
0

z must be completely caused by variations
in concentration. This implies that � and/or � vary slightly with concentration, but
the concentration dependence is too weak to be visible in the measurements of the
density and magnetic susceptibility within the investigated concentration range. Al-
though the di¤erences between the calculated value of BzB

0

z and the experimentally
determined ones are small, they show the importance of either accurately determining
� and � for the domain of concentrations used in the experiments, or observing the
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Figure 4.3: The experimentally determined values for BzB0z to suppress convection
(squares) and the theoretical value, calculated from � and � (dashed line).

system in-situ to be certain that convection is suppressed.
In our �rst report [1] we determined the values of � and � to be � = 12.1 � 0.5

kg m3 wt%�1 and � = (3.8 � 0.2) x 10�6 wt%�1. The corresponding BzB
0

z, is 39 �
3 T2/m, which was in good agreement with our previous experimentally determined
value of 37.5 � 0.5 T2/m, but which deviates from the values described in this chapter.
Using UV-Vis spectroscopy, we found that the di¤erence is most likely caused by the
use of slightly dehydrated NSH, meaning more paramagnetic nickel ions per gram
NSH, in the earlier experiment.

4.3.2 The width of the depletion zone as function of Ge�

According to Eqn. 3.5, it is possible to tune Geff by simply changing BzB
0

z. To inves-
tigate how the width of the depletion zone, �, varies with Geff , a growth experiment
was performed for various levels of Geff . A NSH crystal was submerged in a solution
with a supersaturation of 5.8% at 35�C. After BzB

0

z was set, a schlieren image was
recorded after the width of the depletion zone did not change with time anymore,
and from these images � was determined. From the schlieren images it is possible to
determine �, either from integrating the data, which is the most accurate method, or
from direct measurement of the width of the concentration gradient pro�le from the
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original image, which is easier. The systematic error introduced in the latter method
is within the error bars of the �rst approach, so this was the method we used. The
width of the depletion zone was measured for Geff ranging from 1 to �2. The results
are plotted in �gure 4.4a. From Geff = 1 to 0.5, there is no dramatic change, but for
lower values of Geff , � increases sharply to a maximum at Geff = 0. The behavior
of � is symmetric around Geff = 0. It should be noted that the divergence near
Geff = 0 is limited due to the �nite size of the growth cell. Figure 4.4a shows that,
by using gradient magnetic �elds, Geff can be used as an experimental parameter to
control convection and �, which is not possible for space experiments.

The results have been analyzed using dimensionless numbers from �uid dy-

Figure 4.4: Width of the depletion zone (delta) (a) as function of Geff . (b) as function
of jGeff j�

1

4 :

namics. The relation between the thickness of the boundary layer and Geff is given
by the Sherwood (Sh) number and the Rayleigh number (Ra). The Sherwood number
is a dimensionless number used in mass-transfer analysis. It represents the ratio of
length scale to the di¤usive boundary layer thickness and is represented by [2]

Sh � L

�
, (4.1)

with L a characteristic length. The Rayleigh number is the ratio of natural convective
to di¤usive mass transport, given by [2]
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Ra �
L3�exp�cg

�D
Geff , (4.2)

with �exp the bulk expansion coe¢ cient,� the absolute viscosity and D the di¤usion
coe¢ cient. The shape of the crystal used was more or less cube-like. The empirical
relation between Sh and Ra for cubes for free convection is given by [2]

Sh = 0:55Ra1=4. (4.3)

Considering that all parameters, except � and Geff , are constant, Eqn. 4.3 reduces
to

� _ Ra�1=4: (4.4)

So if � is plotted vs. jGeff j�1=4 and Eqn. 4.4 is valid, it should result in a straight line.
Figure 4.4b shows such a plot. The data is in excellent agreement with Eqn. 4.4, so
� indeed scales with jGeff j�1=4. For very large values of Geff , within the turbulence
regime, and thus very small values of jGeff j�1=4, Eqn. 10 is not valid, explaining the
o¤set for low values of jGeff j�1=4.

4.3.3 Expansion of depletion zone and crystal growth rate

In microgravity crystal growth, it is expected that the depletion zone expands in time
and the crystal growth rate decreases. To investigate if this also happens in a gradient
magnetic �eld, a NSH crystal was submerged in a solution with a supersaturation of
5.3% at 30�C. The value of Geff was set to 0 by tuning BzB

0

z until convection was
suppressed. The expansion of the depletion zone for Geff = 0 was investigated by
measuring the width of the depletion zone, �, at the (001) face as function of time. As
can be seen in �gure 4.5, � keeps expanding during the time of the experiment. After
about 100 minutes, the depletion zone reaches the wall of the growth cell, where it has
expanded to approximately 3 mm, 12 times as wide as at Geff = 1. The insert shows
the log-log plot of the data. The slope of the linear �t has a value of 0.31, indicating
that the depletion zone expands according to � _ t0:31. In addition, the growth rate
was measured by recording the displacement of the crystal�s (001) face during growth.
The results are shown in �gure 4.6. The growth rate decreases dramatically in the
�rst 10 minutes, after which it reaches an apparently constant value of about 2x10�5



50 Chapter 4

Figure 4.5: Width of the depletion zone as function of time for Geff = 0. The insert
shows the log-log plot of the data, which has a slope of 0.31.

mm/s, which is approximately 15% of the growth rate at Geff = 1. It is somewhat
surprising that the growth rate reaches a constant value in 10 minutes, while the
depletion zone keeps expanding over 100 minutes.
If Geff is reduced completely and di¤usion is the only means of mass transport,

the mass transfer can be described by Fick�s second law, taking into account a moving
boundary and interface kinetics. Otálora et al. [3] observed a more or less constant
growth rate for lysozyme crystals growing under microgravity conditions on board
a space shuttle. They analyzed their results by using a quasi steady state di¤usion
equation coupled with linear interface kinetics. This predicts a constant growth rate,
because, as a boundary condition, a constant interface concentration is assumed.
Although this approximation is widely used, in reality, neither the interface concen-
tration nor the interface position is likely to remain constant during the experiment.
Solving the di¤usion equation in the proper way, shows that the depletion zone should
expand according to � _ t0:5, the growth rate vg should decrease, going towards zero
according to vg _ t�0:5 for large t and no stationary growth rate is obtained. This
does not correspond to the experimental data.
The di¤erence between the di¤usion model and the experimental results can be

explained by assuming that Geff is not reduced completely and some residual �ow is
present, as has been observed by monitoring moving dust particles and crystallites,
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Figure 4.6: Crystal growth rate as function of time for Geff = 0.

which were always present during the experiments. Because these particles are very
small, they will not sediment, but act as tracers of the solution �ow. The particle �ow
velocity for Geff = 0 was (0.5 �2.5) x 10 �3 mm/s. The �ow velocity for Geff = 1
could not be measured accurately, because particles moved out of the �eld of view
within the time span of two consecutive images. A lower limit was determined to be
0.25 mm/s for Geff = 1, but the actual velocity is likely to be higher. Therefore,
the �ow velocity at Geff = 0 is reduced to less than 1% of the value at Geff = 1.
The origin of the residual �ow is di¢ cult to determine, with some particles moving
up and others moving down close to each other. Nevertheless, the �ow does not seem
to disturb the depletion zone.
If no growth cell wall was present, a new steady-state depletion zone would form

because of the residual �ow, with a width given by Eqn. 4.4 and a corresponding
constant growth rate. The presence of the wall however, interferes with the solutal
�ow by slowing it down. According to Ramachandran et al. [4], below a certain
Geff , the �ow velocity controlled by the wall e¤ects begin to dominate over the
velocity controlled by boundary layer thickness, thus decoupling the �ow from the
mass transport. If this occurs and the �ow velocity becomes slower than the di¤usion
speed, the mass transfer due to convection becomes slower than mass transfer due to
di¤usion. Hence, the di¤usion �eld expands, although there remains a small amount
of solutal �ow and mass transport due to this. Near the crystal, the stationary
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concentration pro�le is reached quickly while further away it forms slower, as was
observed in the schlieren images.
The relation between growth rate and Geff can be estimated from the Rayleigh

and Sherwood numbers. The latter can be rewritten as [5]

Sh =
vg

�c

L

D
(4.5)

with 
 the volume of the unit cell and �c the concentration di¤erence between the
bulk and the interface. From Eqns. 4.3 and 4.5 it can then be seen that vg _ Ra1=4.
If the growth rate is reduced to 15%, this means an average Geff of approximately
5x10�4, which can be caused by an inhomogeneity in Geff throughout the growth
cell.

4.3.4 Homogeneity of Geff

Figure 4.7: (a) The homogeneity ofGeff along the growth cell at the optimum position
(position 1 in Fig. 4.1b), and (b) at a location with strong variation in the derivative
of BzB0z (position 2 in Fig. 1b).

To investigate the homogeneity of Geff in our experiments, the homogeneity of
BzB

0

z along the z-axis of the magnet needs to be analyzed. Figure 4.7a shows Geff
vs. vertical position, calculated from the �eld pro�le, ranging from 2.5 mm above to



Chapter 3 53

2.5 mm below the optimum position of z = -63.6 mm. This covers the microscope�s
�eld of view, which is 4.5 mm in height. Although this is the position where we get a
maximum expansion of the depletion zone (see �gure 4.2a), Geff varies from 0 to ~3.2
x 10�3, which agrees with the estimate of the average Geff from the growth rate.
If the growth cell is placed at a position where d(BzB

0

z)=dz is not zero, the inho-
mogeneity of Geff is much larger. As a test we positioned our sample at z = -38.4
mm. Figure 4.7b shows Geff vs. z for this position when BzB

0

z was adjusted so as to
realize Geff = 0 in the center. The value of Geff now varies from �5.8 x 10 �2 to 4.7 x
10�2. Not only is there a signi�cant inhomogeneity along the z-axis, the residual Geff
also changes sign; negative below z = 0, meaning a net downward force, and positive
above z = 0, meaning a net upward force. Figure 4.8 shows a schlieren image of a
growing NSH crystal at this position, for which BzB

0

z is adjusted to ful�ll Eqn. 3.3.
Even here, the depletion zone is clearly expanded by a factor 2.3, but two plumes are
visible: one downwards and one upwards, demonstrating the opposite residual forces.
The inhomogeneities in the Geff = 10�2 range heavily in�uence solutal �ow. From
this it can be concluded that the position of the growth cell in the magnet has to be
accurately chosen after careful analysis of the �eld pro�le. It is however possible to
construct a magnet with a specially designed gradient to obtain a homogeneous BzB

0

z

over a relatively large volume, overcoming problems caused by inhomogeneities [6].

4.4 Conclusions

Growing a NSH crystal in a gradient magnetic �eld under the right conditions, shows
that all the features associated with suppression of convection that are expected to
occur during microgravity crystal growth, also occur in a gradient magnetic �eld.
Although we did not reach e¤ective �elds in the Geff = 10�6 range (i.e. genuine
microgravity), the extreme suppression of buoyancy driven convection, the expansion
of the depletion zone and the signi�cant decrease in growth rate are all observed. Also,
the relation between � and Geff shows that � varies with G

�1=4
eff , as expected from

an analysis using the dimensionless Sherwood and Rayleigh numbers. We have also
shown that it is important to have detailed knowledge of the �eld pro�le of the magnet
as well as the concentration dependencies of the magnetic susceptibility and density of
the growth solution. The question whether growth under conditions where convection
is suppressed yields better crystals is not addressed in this chapter. The quality of
NSH crystal grown under Geff = 1 is already quite good, so any improvements in
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Figure 4.8: False color schlieren image of a growing NSH crystal for Geff = 0 at
the position of Fig. 4.7b. In addition to an expanded depletion zone, two convection
plumes are visible, one upwards and one downwards. The blue spots are small crystals
grown on the wall of the growth cell.

crystal quality would be di¢ cult to observe. Experiments in which protein crystals
are grown in a gradient magnetic �eld are underway. These experiments will show the
e¤ect of suppressed convection on crystal quality. In this study, we have shown that
all the aspects that are hold responsible for crystal quality improvement for crystals
grown in microgravity are also present for growth in gradient magnetic �elds. On
top of that, the use of gradient magnetic �elds allows varying Geff , in order to tune
the solutal �ow, the width of the depletion zone and growth rate. This, combined
with the relative experimental ease of growing crystals in magnetic �elds as compared
to space based e¤orts, shows that the use of gradient magnetic �elds o¤ers a good
alternative to protein crystal growth in space.
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Chapter 5

Magnetically controlled

gravity for protein crystal

growth

The occurrence of convective �ows during crystal growth is believed to adversely a¤ect
crystal quality. Space-based crystal growth is therefore actively pursued, particularly
for protein crystals, because buoyancy-driven convection is suppressed in micrograv-
ity. Here we demonstrate that magnetic �elds can be used to tune the e¤ective gravity
from 1 to -0.15 g during the growth of diamagnetic lysozyme crystals and that con-
vection can be damped, stopped, and even reversed. The growth velocity is strongly
reduced in simulated microgravity. This method provides a versatile and accessible
way to realize an earth-based tunable gravity environment for crystal growth in which
protein crystal quality may be optimized�.

�Adapted from: M.C.R. Heijna, P.W.G. Poodt, J.L.A. Hendrix, K. Tsukamoto, P.C.M. Christia-
nen, W.J.P. van Enckevort, W.J. de Grip, J.C. Maan, E. Vlieg, Applied Physics Letters 90 (2007)
264105
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On earth, crystal growth from a supersaturated solution is accompanied by buoyancy-
driven convection in the liquid, an e¤ect often detrimental to crystal quality. For
protein crystals a high quality is required for x-ray structure determination at high
resolution [1, 2], which is of great biotechnological and pharmacological importance.
In order to avoid the adverse e¤ects of convection, much e¤ort has been put in examin-
ing the virtues of space-based microgravity for protein crystal growth [1�3]. However,
whether zero gravity is the ideal growth condition is still an open question.
It has been shown that gradient magnetic �elds can in�uence convective �ows in

paramagnetic �uids [4�6], and to apply the same approach to seemingly nonmagnetic
proteins is appealing, since in fact all diamagnetic materials can be magnetically
levitated [7, 8]. A number of experiments have been performed on protein crystal
growth under levitation conditions [9,10]. The criterion for damping convection during
crystal growth is, however, quite di¤erent from that for levitation, because it relies
on balancing buoyancy rather than gravitational force [5, 6].
A growing crystal extracts solute from the solution and thus locally reduces the

mass density of the solution. The diluted liquid close to the crystal surface will rise due
to buoyancy, which leads to a convection pattern, comprising a thin (typically 0.1�0.3
mm) laminar �ow boundary layer (depletion zone) and a so-called growth plume [11]
on top of the crystal [Fig. 5.1a]. Without convection this plume disappears, di¤usion
remains the sole means of mass transport, and the depletion zone will expand to
in�nity [Fig. 5.1b]. To suppress convection the buoyancy forces caused by di¤erences
in mass density have to be opposed by magnetic buoyancy forces due to di¤erences
in magnetic susceptibility.
For small variations in concentration of the solute, both the density and the sus-

ceptibility depend linearly on concentration, i.e., �(c) = �c+ �0 and �(c) = �c+ �0.
The convection is then suppressed if

BzB
0

z =
�

�
�0g; (5.1)

where Bz is the vertical magnetic �eld, B
0

z its gradient, and �0 the magnetic
susceptibility. The suppression of buoyancy therefore depends on the concentration
dependence of the mass density and susceptibility (� and �) and not on the mass
density and susceptibility themselves, as for normal and magneto-Archimedes levita-
tion [12,13].
We demonstrate our method using the diamagnetic protein hen egg-white lysozyme

(HEWL) for which crystallization conditions have been well established [14]. The



Magnetically controlled gravity for protein crystal growth 59

Figure 5.1: Magnetically tuned gravity during crystal growth. (a) A growing crystal
depletes its surrounding solution (1), leading to a growth plume (2) and convective
�ows (3). (b) At zero e¤ective gravity convection is cancelled and the di¤usion �eld
expands. (c) In inverted gravity the buoyancy-driven convection is reversed, and a
downward growth plume is formed. (d) The width of the depletion zone as function
of Geff . (e)-(i) Experimental shadowgraphy images of a growing lysozyme crystal
(indicated by the dashed white circles) in solution for Geff ranging from -0.15 to 1.
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Figure 5.2: Experimental set-up for in-situ observation of convective �uid �ows in
a 33T magnet. (a) Schematic representation of the shadowgraphy insert used to
visualise density variations in solutions. (b) Pro�les of magnetic �eld and �eld times
�eld gradient (BzB0z) scaled to a B0 background �eld. The inset shows the BzB

0
z

pro�le around the optimum position and the corresponding e¤ective gravity.
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experiments were performed in a 33 T water-cooled resistive magnet with a bore di-
ameter of 32 mm at the High Field Magnet Laboratory at the Radboud University
Nijmegen. The magnet, �tted with a double-walled tube for temperature control,
contains a shadowgraphy [15] setup for imaging convection patterns around the grow-
ing crystal [Fig. 5.2a]. A glass cuvette (inner dimensions of 8 x 4 x 18 mm3) with
crystal and solution was placed at the position of maximum �eld gradient [red curve
in Fig. 5.2b]. The cuvette is illuminated from the side by a highly collimated beam
of light from a halogen lamp, using an optical �ber in combination with a lens and a
75 �m pinhole, leading to an image on a camera. Variations in the concentration of
the �uid result in local di¤erences in the refractive index, which appear as intensity
variations in the image. The sensitivity to concentration di¤erences scales with the
degree of being out of focus [15].
We used HEWL from Sigma-Aldrich (Lot No. 094K1454), which was dissolved and

dialyzed against a 0.05M NaOAc/HOAc bu¤er solution of pH 4.5 at room temperature
before use. Tetragonal lysozyme crystals were grown from a solution of 30 mg/ml
HEWL, 0.685M NaCl, and 0.05M NaOAc/HOAc at pH 4.5 and 18�C. Crystals were
taken from the growth vessel and placed as a seed in the glass cuvette for the magnet
experiments. The crystal was manipulated to be in the �eld of view of the insert,
after which the solution was removed and the cuvette was placed in a refrigerator at
4�C for 20 min. As a result, the crystal is attached to the glass wall of the cuvette.
Finally, the cuvette was re�lled with the same solution as used during growth and
placed in the insert for experiments.
The condition for convection damping is determined by � and � in Eqn.5.1. For

HEWL � is 0:303kgm�3=mg ml�1 [16], and we have determined � to be (�1:2 �
0:5) � 10�9 ml/mg using a magnetic susceptibility balance. Inserting these values
in Eqn. 5.1 we expect that convection is damped at BzB

0

z = �3100 � 1500T 2=m,
which is signi�cantly larger than the -1500 T 2/m needed for simple levitation of
the bulk solution [9]. We determined the actual gradient �eld at which the growth
plume disappears by using shadowgraphy. Figure 5.1e shows a growing HEWL crystal
at zero �eld gradient, and the convection plume is clearly visible as a white streak
rising upward from the crystal. In the picture the crystal itself is blurred because for
shadowgraphy out-of-focus images have to be taken. The growth plume disappears,
and thus convection is suppressed at a gradient magnetic �eld of �4450�30T 2=m [Fig.
5.1g]. The value falls within our estimate using alpha and beta, but is much higher
than previously expected [5, 9] and requires the largest magnets currently available.
In fact, this value for the gradient �eld accurately determines beta as (�0:84�0:06)�
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10�9ml=mg.
This result unambiguously shows that gradient magnetic �elds can create con-

ditions on earth that mimic those in space-based microgravity. Most importantly,
however, is the fact that by changing the magnetic �eld strength the e¤ective gravity
for convection can be continuously varied. If we de�ne [17]

Geff = 1�
�

��0g
BzB

0

z, (5.2)

Geff is expressed in terms of the earth�s gravitational acceleration g. By varying
the magnetic �eld we are able to change Geff and as a result the convection is tuned
from normal, with a growth plume upwards [Figs. 5.1e and f], via cancellation at
Geff = 0 [Fig. 5.1g], to inverted with the growth plume downwards for negative
values of Geff [Figs. 5.1h and i].
The range of �eld gradients at which convection is stopped is quite small, �30T 2=m

centered around �4450T 2=m, which corresponds to B =27 T in the magnet we used.
Decreasing (increasing) the magnetic �eld by only 0:1T (Geff � �0:005)already
results in appreciable convection and thus in upward (downward) growth plumes.
This strong e¤ect is caused by the steep dependence of the balance between convective
�ow and mass di¤usion on Geff , which is re�ected by the thickness of the depletion
zone. For example, Fig. 5.1d shows the theoretically calculated, and for NiSO4�6H2O
experimentally demonstrated [17], dependence of the thickness of the depletion zone
delta on gravity. Since � _ G�1=4eff it diverges near zero, which implies that the �eld
gradient has to be set quite precisely. Such a strong dependence also puts constraints
on the spatial variation of Geff within a magnet. From Eqn. 5.2 we calculate Geff f as
function of the position around the crystal using the experimental �eld pro�le [inset
of Fig. 5.2b], which shows that changes of Geff over the relevant region are within
�0:005. Despite the precise condition on the required �eld gradient, milligravity
rather than microgravity [18] is su¢ cient to make convective transport slower than
that due to di¤usion and to dampen convection.
To show that the suppression of convection indeed a¤ects crystal growth, we have

measured the growth rate of two lysozyme crystals, one at Geff =1 and one at 0, at
otherwise identical conditions (Fig. 5.3). Here the same imaging setup was used, but
now with the crystal in focus to determine the position of its surface. The growth
rate drops a factor of 15 from 30� 2 to 2� 2 �m=h when convection is stopped and
the depletion zone is expanded, which is similar to results obtained under space-based
microgravity [19].
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Figure 5.3: Growth rate of tetragonal HEWL crystals at normal and zero e¤ective
gravity, Geff . The squares and triangles denote the increase in HEWL crystal size at
a Geff = 1 and Geff = 0 respectively, obtained in the <110> direction. The inset
shows a tetragonal HEWL crystal similar to those used in the experiments, and the
< 110 > direction with respect to the morphology.

In contrast with other methods to suppress convection such as gel growth [20,21]
and micro�uidics [22], gradient magnetic �elds o¤er a powerful way to tune the e¤ec-
tive gravity during crystal growth under earth-based conditions, with far easier access,
availability, and including in situ observation. Especially for protein crystal growth
this possibility is very attractive, since the tunability will allow the optimization of
the crystal quality by �nding the right balance between mass transport towards the
crystal and the incorporation rate of molecules at the crystal surface. The required
gradient magnetic �elds for suppression of convection are found to be in the 4000�
5000 T2/m range. Because density and susceptibility are closely related, we expect
that this value is rather similar for most diamagnetic proteins. We foresee that our
determination of the proper conditions for which convection is suppressed will trigger
the design and construction of dedicated magnets that are capable of sustaining high
�eld gradients for the several days that are needed to grow protein crystals.
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Chapter 6

The critical Rayleigh number

in low gravity crystal growth

from solution

If crystal growth from solution takes place in a closed container, a critical Rayleigh
number can be de�ned, below which buoyancy driven convection is suppressed and
mass transport is completely determined by di¤usion at gravitational accelerations
higher than 0g. Using �nite element simulations and an analytical model, we show
that it is possible to predict the critical value of the Rayleigh number. This result
can be used to optimize growth conditions for microgravity protein crystal growth,
if the gravitational acceleration cannot be cancelled completely, like in space, or is
cancelled inhomogeneously, like in gradient magnetic �elds �.

�Adapted from: P.W.G. Poodt, P.C.M. Christianen, W.J.P. van Enckevort, J.C. Maan, E. Vlieg,
submitted to Crystal Growth & Design
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6.1 Introduction

Crystal growth from solution in a reduced gravity environment has received a consid-
erable amount of attention, because of its potential to improve the quality of protein
crystals [1]. In the absence of gravity, buoyancy driven convection, induced by den-
sity gradients resulting from the depletion of the solution, is suppressed. As di¤usion
starts dominating over convective mass transport, a wide depletion zone develops and
the growth rate reduces signi�cantly, which is expected to lead to an improvement of
protein crystal quality as compared to crystals grown under normal gravity. This is
highly relevant, because for protein structure determination by X-ray di¤raction, pro-
tein crystallization is often the quality limiting step. A considerable number of growth
experiments have been performed in space, where gravity levels as low as 10�6g can
be attained. However, the question whether this indeed leads to better crystals is
still not conclusively answered [2, 3], which can be attributed to the complexity of
the system and the corresponding shortage of both fundamental knowledge and ex-
perimental evidence of what actually happens during crystal growth under reduced
gravity.
A promising alternative for space based experiments, is the use of gradient mag-

netic �elds [4�6], with which it possible to create an e¤ective microgravity environ-
ment for crystal growth, much more accessible and reproducible than by experiments
in space. It o¤ers the opportunity to investigate the e¤ect of reduced gravity on crys-
tal growth in great detail [7]. In order to understand the e¤ect of reduced gravity on
crystal growth from solution, the complex interplay of crystallization kinetics, �uid
�ows and mass and/or heat transport has to be studied. Experimentally, this can be
quite complicated, and therefore a number of computer simulations have been carried
out to give insight into the hydrodynamics during crystal growth [1]. Unfortunately,
these simulations are often restricted to a speci�c set of growth conditions, and typi-
cally only consider gravitational accelerations of 1g and 0g. As a consequence, these
results do not o¤er general insight into low gravity crystal growth, but only to speci�c,
limiting cases. Analytical descriptions, on the other hand, can only be obtained for
highly simpli�ed cases. Ostrach o¤ers analytical expressions for �ow velocities at low
gravity levels [8] from which it follows that, in order to obtain di¤usion dominated
mass transport, the gravitational acceleration should be 0g. His analysis, however,
was performed for crystal growth in an in�nitely large container, in which no inter-
action between the �owing solution and container walls exists. That this interaction
plays an important role was shown by Ramachandran et al [9]. They showed by
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simulations of crystal growth in an enclosure the existence of a critical value of the
e¤ective gravitational acceleration, higher than 0g, below which mass transport is
determined by di¤usion rather than convection. The value of the e¤ective gravity
where this occurs was found to depend on the size ratio of the crystal and growth
container. Understanding the nature of this critical behavior could o¤er a means to
optimize growth conditions for (protein) crystals in situations where the gravitational
acceleration cannot be suppressed completely, like in space, or in inhomogeneous en-
vironments, like in gradient magnetic �elds.

6.2 The critical Rayleigh number

Crystal growth in a closed container shows resemblance with the classical Rayleigh-
Benard problem [10] where �uid is enclosed between a horizontal hot bottom plate
and a cooled top plate. A temperature and density gradient will form, but buoyancy
driven convection only sets in if the viscous forces are overcome. If not, heat will
be transported by conduction. Although in the case of crystal growth from solution
there are concentration gradients instead of thermal gradients, a large similarity exists
concerning the hydrodynamics, so we can make use of existing models and theory
describing heat transport in enclosures.
To describe mass transport in enclosures, the relevant parameters can be captured

in two dimensionless numbers, namely the Rayleigh number Ra, and the Sherwood
number Sh, given by [11]

Ra � geffL
3

�D

�b � �e
�b

; (6.1)

and

Sh � @c

@n

L

�c
; (6.2)

with geff the e¤ective gravitational acceleration, �b and �e the density of solution
with bulk and equilibrium concentration respectively, L a characteristic length, �
the kinematic viscosity, D the di¤usion coe¢ cient, and @c@n and �c the concentration
gradient and di¤erence within the enclosure. The Rayleigh number is a measure of the
ratio between convective and di¤usive mass transport, whereas the Sherwood number
re�ects the dimensionless concentration gradient in the container, which, in the case
of crystal growth, is a measure of the growth rate [12]. Below a critical value of the
Rayleigh number, mass is transported only by di¤usion and the Sherwood number
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has a constant value, but above this critical value, viscous forces are overcome and
convection sets in, where the Sherwood number increases with increasing Rayleigh
number. So, the critical Rayleigh number for a given geometry can be determined by
measuring the Sherwood number as function of the Rayleigh number, which can be
changed by varying any of the parameters of Eqn. 6.1. In this chapter, we focus on
changing the gravitational acceleration, either by going to space or by application of
gradient magnetic �elds. A dimensionless e¤ective gravity, Geff ; can be de�ned as

Geff � geff=g; (6.3)

with g the gravitational acceleration on earth, being 9:8m=s2.
To understand the e¤ect of reducing gravity, and thus reducing Rayleigh numbers,

on convection and mass transport during crystal growth, and to investigate whether
the concept of critical Rayleigh numbers also applies to crystal growth from solution,
the relation between the Sherwood and Rayleigh number has to be studied. Although
well established for simple geometries such as the Rayleigh-Benard problem, �nding
analytical models for the relation between Sh and Ra can be extremely complex for
more realistic geometries. Recently, Teertstra et al. [13] published a model that gives
an accurate description of this relation for the case of heated bodies in concentric
enclosures. This model can be adapted to describe crystal growth in enclosures for
various values of the Rayleigh number.

6.3 The 3-term model

The model developed and thoroughly tested by Teertstra et al. [13] divides the hydro-
dynamics in three domains: a convective one for high Rayleigh numbers, a di¤usive
domain for low Rayleigh numbers and a transition regime for intermediate Rayleigh
numbers (Fig. 6.1). The relation between the Sherwood number and the Rayleigh
number can be written as

Sh = S +

�
A

Ra2
+

Bp
Ra

��1=2
, (6.4)

with S, A and B constants that are determined by the geometry and sizes of the
crystal and container. The Sherwood number in the di¤usion dominated regime, so
for Rayleigh numbers below the critical value, is given by S. The exact expressions
for S, A and B for various geometries can be found in Teertstra et al [14]. Eqn. 6.4
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Figure 6.1: Sh vs. log(Ra). The three domains shown are described by the 3-term
model.

can be seen as an extension to low Rayleigh numbers for the generally used relation
between Sh and Ra for free convection [7, 11]

Sh / Ra1=4, (6.5)

which is re�ected in the last term of Eqn. 6.4.

6.4 Finite element simulations

The 3-term model is a 3-dimensional, steady-state model for a uniform e¤ective grav-
itational �eld, whereas crystal growth is a non-steady-state process and the e¤ective
gravity is not necessarily uniform [7]. To test whether the 3-term model can be ap-
plied to determine the critical Rayleigh number for crystal growth from solution in an
enclosure, the model is compared with the results from 2-dimensional �nite element
simulations. First, we will test the validity to compare the 2D simulations with the 3D
model and determine the critical Rayleigh number for the steady-state case. Second,
we will compare this result with simulations having non-steady-state boundary con-
ditions. Third, we will investigate the e¤ects of an inhomogeneous e¤ective gravity,
and �nally, we will explore possibilities to optimize growth conditions with respect to
an inhomogeneous e¤ective gravity.
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The �nite element simulations are performed with FlexPDE 5 from PDE solutions
Inc [15]. The geometry used in the 2-dimensional simulations comprises a square
crystal centered in a concentric square enclosure, of which the sizes can be varied.
It is assumed that the crystal growth rate is small enough to safely ignore moving
boundaries. The simulations are performed in steady-state mode and a non-steady-
state mode, depending on the applied boundary conditions. As a model system,
we consider the growth of nickel sulfate hexahydrate crystals from a supersaturated
aqueous solution. The solutal settings are given in table 6.1 and correspond to an
earlier experiment [5]. For not too large concentration variations, the density of the
solution is assumed to vary with concentration according to � = �c + �0, with � a
proportionality constant and �0 an o¤set value.
We used the Vorticity-Streamfunction formulation for the Navier-Stokes, the con-

tinuity and mass transport equations in a Boussinesq approximation, given by

Navier-Stokes:
@!

@t
+
@	

@y

@!

@x
� @	
@x

@!

@y
=�r!+��g

�0

@c

@x
, (6.6)

Continuity: r2	� ! = 0 , (6.7)

Mass transport:
@c

@t
+
@	

@y

@c

@x
� @	
@x

@c

@y
= D

�
@2c

@x2
+
@2c

@y2

�
. (6.8)

The vorticity ! is de�ned as the curl of the velocity, and the streamfunction 	 is
de�ned in such a way that the x and y components of the �ow velocity V can be
expressed as Vx = @	

@y and Vy =
@	
@x . For the simulations, a dynamic adaptive mesh

re�nement was used to automatically enhance resolution where the greatest changes
are taking place. The non-slip condition at the crystal interface and container walls
was implemented using the penalty method [16].

6.5 Results

6.5.1 Uniform e¤ective gravity and steady state

The three-term model is a 3D model, while the simulations are 2D. To investigate
whether the simulations can be compared with the model, a 1 x 1 mm2 crystal cen-
tered in a 7 x 7 mm2 growth container was modeled in the steady-state mode, with
the concentration at the container wall and crystal interface �xed at the bulk and
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Table 6.1: Values used for the simulations.

Parameter Value
cb 1.16 g=cm3

ce 1.07 g=cm3

� 0.05 cm2=s
D 5x10�6 cm2=s
k 5x10�4 cm�1

g 981 cm=s2

� 0.223
�0 1.1565 g=cm3

equilibrium concentration, respectively. Figure 6.2a shows a typical example of such
a simulation, where the convection plume and depletion zone are clearly visible. In
Fig. 6.2b, the streamlines show the �ow pro�le of the solution where two vortices
can be seen next to the crystal. For di¤erent values of the Rayleigh number, i.e.
di¤erent values of Geff , the Sherwood number was computed. The results are �tted
using Eqn. 6.4, with S, A and B as �t parameters (Fig. 6.3 and table 6.2). For
this given geometry, the Sherwood number is constant below a Rayleigh number of
100. Here, mass transport is completely di¤usion dominated, resulting in a spheri-
cally symmetric depletion zone around the crystal. Lowering Geff further will have
no signi�cant e¤ect on this. This is the critical Rayleigh number, corresponding to
a Geff of � 10�4. So to achieve di¤usion dominated mass transport, a complete
absence of is not required.
Next, S, A and B were calculated according to Teertstra et al. [14] for the 3D

analogue of the simulation, using a 1 x 1 x 1 mm3 crystal centered in a 7 x 7 x
7 mm3 container (table 6.2). Both the 2D simulation results and 3D calculation
were normalized by dividing the outcomes by S. The results are given in Fig. 6.4.
Although the values of S, A and B for the �t to the 2D simulation and the 3-term
model di¤er, the normalized plots completely overlap, giving the same value for the
critical Rayleigh number. Therefore, it is safe to compare the 2D simulations with
the 3D model for determining the critical Rayleigh number.
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Figure 6.2: a and b: Typical iso-concentration lines and streamlines around a 1x1 mm
crystal (white square) centered in a 7x7 mm container, obtained from �nite elements
simulation. The depletion zone and convection plume can clearly be seen.

Table 6.2: S, A and B determined from the �t and the 3-term model

Parameter Fit to 2D-simulation 3-term model
S 1.66 4.06
A 1.03 x 106 6.11 x 105

B 14.8 2.7

6.5.2 Non-steady-state

In reality, crystal growth is not a steady-state process. There is only a limited amount
of solute available and the uptake of solute at the interface is governed by the local
supersaturation. The concentration, and thus the corresponding density, at the in-
terface will typically not have the equilibrium value, and will change in time. So
the de�nition of the Rayleigh and Sherwood number (Eqns. 6.1 and 6.2) has to be
corrected by replacing cmin and �min with the actual concentration and density at the
crystal interface, ci and �i. When a crystal is introduced in a supersaturated solution,
the solution depletes, and as the di¤erence between the bulk and interface concen-
tration increases, the Rayleigh and Sherwood number will show a transient behavior.
But as long as during growth the Rayleigh number does not exceed the critical value,
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Figure 6.3: Data points from the simulations, represented by the squares, and the
3-term model �t, reperesented by the line.

the Sherwood number behavior will resemble the case if Geff = 0.
To incorporate this in the simulations, the mass �ux at the container wall is set

to zero and at the interface, linear kinetics are assumed. As the mass �ux is de�ned
as j = �D @c

@n , the boundary conditions become

@c

@nc
= 0; (6.9)

and
@c

@ni
= h (c� ce) ; (6.10)

with @c
@nc

the �ux normal to the container wall, @c
@ni

the concentration gradient
normal to the crystal interface, h the kinetic coe¢ cientk divided by the di¤usion
coe¢ cientD and ce the equilibrium concentration. Changing h or the type of interface
kinetics in the simulations only changes the time scale and not the end result, so
h was set at a typical value of 5 � 10�4 cm�1. In the non-steady-state case, the
Sherwood number will not reach a constant value, but keeps decreasing until the
growth container is fully depleted. During the simulation, the Sherwood number was
monitored for a period of 104 seconds for di¤erent values of the e¤ective gravity, as can
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Figure 6.4: 2D simulations (squares) vs. 3D model (dashed line)

be seen in Fig. 6.5. For all values of Geff , the Sherwood number decreases over time
as the depletion zone grows. The plots for below 10�4 completely overlap with the
one for Geff = 0, whereas for higher values the separate plots can be distinguished.
This re�ects that below Geff = 10

�4 the Rayleigh number does not exceed the critical
value, so mass transport is fully di¤usion determined and cannot be distinguished from
the case where Geff = 0. For which Geff the Rayleigh number exceeds its critical
value depends on the nature of the interfacial kinetics, and the exact value cannot
be determined by the 3-term model. However, the excellent agreement between the
critical value of determined from both the steady-state model and non-steady-state
simulations shows that the 3-term model gives a good estimate of the value of the
critical Rayleigh number, since variations in interface concentration are not likely to
deviate signi�cantly from the steady state situation, especially for low Geff .

6.5.3 Inhomogeneous e¤ective gravity

In refs. [5] and [7], convection was suppressed during growth of nickel sulfate crystals
from solution by using gradient magnetic �elds. An analysis of the �eld pro�le showed
that the e¤ective gravity was not homogeneous, but varied parabolically in the growth
container, being zero at the crystal and around 10�3 further away from the crystal.
Nevertheless, convection was suppressed and a widely developed depletion zone was
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Figure 6.5: The Sherwood number vs. time for the non-steady-state simulations

observed. Our simulations can be extended to describe this situation as well. To get
clear results, an exaggerated parabolic variation was introduced in the simulation,
with Geff = 0 at the center of the growth container and maxima of Geff = 10�2 at
the top and bottom of the growth container (Fig. 6.6). From the previous results we
expect some convection to be present in this case. The simulations were performed
in a non-steady-state mode with linear interface kinetics. Fig. 6.7 shows the results
for a period of 2.75 hours. The decrease of the Sherwood number in time di¤ers from
the case when Geff = 0, and resembles the case of the homogeneous Geff = 10�3,
which is above the critical value. Figs. 6.8a and b shows iso-concentration lines and
streamlines after 1200 seconds. The depletion zone has lost its circular symmetry,
being extended above the crystal and �attened below. As can be seen in Fig. 6.8b,
there are two vortices above and two below the crystal, whereas for a homogeneous
Geff there are only two above the crystal. These additional vortices are formed
because depleted solution below the crystal feels an upward force that decreases when
the solution rises, due to the inhomogeneity of Geff . Near the crystal, the upward
force is very small and the �uid�s momentum causes part of the solution �ow sideways
and downwards again, forming the vortices.
If a parabolic gravity �eld like this is present, the e¤ect of the inhomogeneity is

enhanced, because the rising depleted solution above the crystal protrudes into regions
with a higher Geff , increasing the driving force for �uid �ow. One can, however, tune



78 Part 1

Figure 6.6: The parabolic (full line) and 3rd order polynomial (dashed line) inhomo-
geneous Geff , used in the simulations.

the inhomogeneity in such a way that the negative e¤ects are minimized. A possible
way is to introduce an inhomogeneous �eld of which Geff has negative values above
the crystal, and positive below. Then, depleted solution above the crystal will not rise,
but actually �ows towards the crystal, in the same manner as the depleted solution
from below the crystal does. In this way, the depleted solution is e¤ectively trapped
in a region of low Geff . Gradient magnetic �elds o¤er this possibility. To see the
e¤ects on the hydrodynamics, a 3rd order polynomial e¤ective gravity �eld was used
in the simulation, keeping the other settings the same as for the parabolic pro�le.
Now Geff is negative above the crystal and positive below, as can be seen in Fig.
6.6. Fig. 6.7 again shows the results for a period of 2.75 hours. The data points fall
between the plots for the homogeneous Geff = 0 and the parabolic pro�le. Fig. 6.8c
and d show the concentration and streamlines after 1200 seconds, and reveal how the
depleted solution is "trapped" near the crystal. Thus, by tuning the e¤ective gravity
�eld in such a way that it is negative above the crystal and positive below, reduces
the negative e¤ect of the inhomogeneity, as if reducing Geff towards its critical value.
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Figure 6.7: The Sherwood number vs. time, compared for homogeneous and inhomo-
geneous e¤ective gravities.

6.5.4 Optimizing growth conditions for inhomogeneous Geff

From the 3-term model, we can predict the critical Rayleigh number for di¤erent con-
tainer sizes below which mass transport is di¤usion dominated. If the inhomogeneity
of Geff is known, we can use this to optimize the container size to make sure that
mass transport is determined by di¤usion during growth. An approximate criterion
for this is

Geff (so) < Geffc (so) ; (6.11)

which says that Geff (so), the mean e¤ective gravity in the growth container
as function of the container size so, should be smaller than Geffc (so), the critical
e¤ective gravity as function of so. The �rst term can be determined from the �eld
pro�le and the second using the 3-term model. Fig. 6.9 shows the critical Geff as
well as the mean e¤ective gravity as function of container size, for a 1 x 1 mm2 crystal
in the parabolic e¤ective gravity pro�le of Fig. 6.7. Eqn. 6.11 is satis�ed left from
the intersection point of the two graphs, so for container sizes less than 4 x 4 mm2.
To test whether mass transport is really di¤usion dominated for this container size,
a simulation was performed for this speci�c situation. The behavior of the Sherwood
number was found to be indistinguishable from the case of Geff = 0, so the critical
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Figure 6.8: a and b: Iso-concentration lines and streamlines obtained from the par-
abolic Geff pro�le. c and d: Iso-concentration lines and streamlines obtained from
the 3rd order polynomial Geff pro�le.

Rayleigh number was not exceeded, showing that Eqn. 6.11 can be used as a valid
optimization criterion. From the simulations however, it was observed that for this
speci�c geometry and inhomogeneity, applying Eqn. 6.11 leads to an underestimate
of 10-15% for the maximum allowable container size, especially when using e¤ective
gravity �elds like the 3rd order polynomial shown in Fig. 6.6. A less strict criterion
can be chosen, but nevertheless, the possibility to optimize both container size and
e¤ective gravity �eld by using the 3-term model o¤ers prospects to reach optimum
growth conditions.

6.6 Discussion

In the simulations, a crystal of constant size was used while in real growth experi-
ments, the crystal starts out as a nucleus. As the critical Rayleigh number depends
on the ratio between crystal size and container size, a value found from the 3-term
model for the �nal size of the crystal will not be valid for when the crystal is still small.
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Figure 6.9: The critical Geff and mean Geff as function of container size.

However, when the crystal is still small and the depletion zone is still developing, the
concentration and density variations will be small. So, convection only begins to play
a signi�cant role when the crystal is large. Nevertheless, to get a complete and more
accurate image of crystal growth in an enclosure, 3-dimensional simulations including
moving boundaries have to be performed. It is questionable however, whether sig-
ni�cant new information is obtained compared to the increase of complexity of the
simulations.
For non-concentric geometries, like cubic crystals in elongated, rectangular con-

tainers, the expressions for the S, A, and B terms in Eqn. 6.4 are not given by
Teertstra et al. [14], although our simulations show that the 3-term model is still
valid. An approximation can be made by taking the average distances between the
crystal and container walls beside and above the crystal, because these in�uence the
value of the critical Rayleigh number most strongly. This average value can be used
for calculating S, A and B.

6.7 Conclusion

In this chapter we have shown by combining theory and �nite element simulations,
that for crystal growth from solution in a closed growth container, there is a critical
Rayleigh number below which convection is suppressed and mass transfer is di¤usion
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dominated. In that case, viscous forces and friction with the container walls cannot
be overcome by the buoyant driving force for convection. In practice, this means that
it is not necessary to reduce the gravitational acceleration completely to suppress
convection, if growth takes place in a container. We have shown that the value of this
critical Rayleigh number, and the corresponding critical can be predicted by using the
3-term model of Teertstra et al [13]. Albeit a steady state model developed for heat
transfer, we have shown that it can also be applied to crystal growth in low gravity,
o¤ering the opportunity to optimize the container size for di¤erent inhomogeneous
e¤ective gravity �elds, like when using gradient magnetic �elds to reduce to suppress
convection.
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Chapter 7

A comparison between

simulations and experiments

for microgravity crystal

growth in gradient magnetic

�elds

Experiments on microgravity crystal growth in gradient magnetic �elds for nickel sul-
fate and lysozyme are compared with �nite element simulations. These simulations
include the inhomogeneous e¤ective gravity that accompanied the magnet experi-
ments. An excellent agreement between the simulations and the experiments was
found. Methods to reduce the adverse e¤ects of the inhomogeneous e¤ective gravity
and to optimize the growth conditions are discussed�.

�Adapted from: P.W.G. Poodt, M.C.R. Heijna, P.C.M. Christianen, W.J.P. van Enckevort, J.C.
Maan, E. Vlieg, submitted to Crystal Growth & Design

85
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7.1 Introduction

Microgravity protein crystal growth is expected to lead to an improvement of protein
crystal quality, compared to crystals grown under normal gravity, due to the suppres-
sion of buoyancy driven convection [1]. This is highly relevant, because for protein
structure determination by X-ray di¤raction, protein crystallization is often the qual-
ity limiting step. A considerable number of growth experiments have been performed
in space, where gravity levels as low as 10�6g can be attained, but the question
whether this indeed leads to better crystals is still not conclusively answered [2, 3].
The use of gradient magnetic �elds is a promising alternative for space based exper-
iments [4], which we recently have shown by growing both para- and diamagnetic
crystals in a microgravity condition [5, 6]. Under experimentally much more control-
lable conditions than in space, this o¤ers the possibility to study in detail the e¤ect
of reduced gravity on the �uid dynamics, mass transport and growth rate [7]. One
important aspect about the magnet experiments, however, was that the gravitational
acceleration was not homogeneously suppressed throughout the growth cell. The ef-
fective gravity varied parabolically, being zero near the crystal but having a higher
value further away [7]. That inhomogeneous e¤ective gravities have an e¤ect on the
hydrodynamics during growth, was shown in our previous work [8]. In this chapter,
we include an inhomogeneous e¤ective gravity in �nite element simulations and com-
pare these with our previous magnet experiments, to get a better understanding of
the experimental observations. In the �rst part, the nickel sulfate hexahydrate exper-
iments from ref. [7], and in the second part, experiments with lysozyme described in
ref. [6] will be discussed.

7.2 Finite element simulations

The �nite element simulations were performed using the FlexPDE 5 software from
PDE solutions Inc [9]. It is assumed that the crystal growth rate is small enough
to safely ignore the moving boundaries. For not too large concentration variations,
the density of the solution � is assumed to vary with concentration c according to
� = �c + �0, with a � proportionality constant and �0 an o¤set value. We used
the Vorticity-Streamfunction formulation for the Navier-Stokes, continuity and mass
transport equation in a Boussinesq approximation, given by
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Navier-Stokes:
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Continuity: r2	� ! = 0 , (7.2)

Mass transport:
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with ! the vorticity and 	 the streamfunction [8]. A dynamic adaptive mesh
re�nement was used to automatically enhance resolution where the greatest changes
are taking place, while the non-slip condition at the crystal interface and container
walls was implemented using the penalty method [10]. The mass �ux at the container
wall is set to zero and linear growth kinetics are assumed at the crystal-solution
interface. As the mass �ux is de�ned as j = �D @c

@n , the boundary conditions become

@c

@nc
= 0; (7.4)

and
@c

@ni
= h (c� ce) ; (7.5)

with @c
@nc

the concentration gradient normal to the container wall, @c
@ni

the concentra-
tion gradient normal to the crystal interface, h the kinetic coe¢ cient divided by the
di¤usion coe¢ cient andce the equilibrium concentration
During the simulations, the dimensionless Sherwood number Sh can be computed.

The Sherwood number is de�ned as

Sh � @c

@n

L

�c
; (7.6)

with @c
@n the concentration gradient at the crystal interface, L a characteristic length

and �c the di¤erence between the bulk and equilibrium concentration. It re�ects the
dimensionless concentration gradient at the crystal interface, and is a measure for the
amount of mass transported to the crystal, which is directly related to the crystal
growth rate [12]. Finally, a dimensionless e¤ective gravity is de�ned as

Geff � geff=g; (7.7)

with g the gravitational acceleration on earth, being 9:8m=s2.
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7.3 Nickel sulfate hexahydrate experiments

7.3.1 Results

In refs. [5] and [7], a 1 x 2 x 2 mm3 nickel sulfate hexahydrate crystal was submerged
in a 7 x 7 x 13 mm3 growth container �lled with supersaturated solution. A gradient
magnetic �eld was applied to suppress convection and in-situ schlieren microscopy was
used to monitor �uid �ow, mass transport and growth rate. The e¤ective gravity was,
however, not uniform, and in order to �nd out how this a¤ected the �uid dynamics, we
compare �nite element simulation including an inhomogeneous e¤ective gravitational
�eld with the experimental observations.

Figure 7.1: The geometry (left) and e¤ective gravity pro�le (right) used in the simu-
lations for growth of a nickel sulfate crystal. The 1 x 2 mm2 crystal (gray) is placed
in a 7 x 13 mm2 container.

In the simulations, a 1 x 2 mm2 crystal in a 7 x 13 mm2 growth container was
used (Fig. 7.1), which re�ects the geometry of the experiments. The parameters used
for the simulations are given in table 7.1. From the �eld pro�le of the magnet, a
parabolic e¤ective gravity pro�le was calculated, and included in the simulations, as
shown in Fig. 7.1.
Figs. 7.2a and b show the streamlines and iso-concentration lines around the

crystal after a simulation corresponding to 1500 seconds. The depletion zone has
signi�cantly expanded, but shows a pear shaped pro�le that is extended above the
crystal and �attened below. There are two vortices above and two below the crystal,



Chapter 7 89

Table 7.1: Values used for the simulations for nickel sulfate crystal growth

Parameter Value
cb 1.16 g=cm3

ce 1.07 g=cm3

� 0.05 cm2=s
D 5x10�6 cm2=s
h 5x10�4 cm�1

g 981 cm=s2

� 0.223
�0 1.1565 g=cm3

shaping the depletion zone, whereas for a homogeneous Geff we found only two above
the crystal [8]. The additional vortices are formed because depleted solution below
the crystal feels an upward force that decreases when the solution rises due to the
inhomogeneity of Geff . Near the crystal, the upward force is very small and the �uid�s
momentum causes part of the solution to �ow sideways and downwards again, forming
the vortices. Fig. 7.2c shows a schlieren microscopy image of the left side of a growing
nickel sulfate crystal in a gradient magnetic �eld [7]. With schlieren microscopy, the
concentration gradient was visualized in the horizontal direction. Although in the
vertical direction, no information about the concentration gradient is available, it is
still clearly visible that the depletion zone has extended widely, to approximately 12
times of its original width at Geff = 1, showing a similar pear shaped pro�le as in
Fig. 7.2b.
Fig. 7.3 shows a vector plot of the �ow velocity in the growth container, obtained

from the simulation, where the vortices from the streamline plot can be recognized.
Near the crystal side faces, where the opposite rotating vortices meet, the vector plot
shows an erratic behavior with parts of the �uid �owing upward and others downward,
next to each other. This is in accordance with the experimental observations, where
small particles present in the growth solution followed the solution �ow during growth
and showing the same erratic behavior [7]. Some particles moved up, others down,
though very slow, with no single source identi�able. However, from the simulation it
follows that this behavior originates from the interacting vortices above and below the
crystal. Additionally, the �ow velocity obtained from the simulation and experiments
have the same order of magnitude of 10�3 mm/s, which is less than 1% of the �ow
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Figure 7.2: (a) and (b) Streamlines and iso-concentration lines around a growing
nickel sulfate crystal after simulations corresponding to 1500 s (di¤erent scales). c.
Schlieren image of the left side of a growing nickel sulfate crystal (white), taken from
chapter 3.

velocity at Geff = 1.
In ref. [7], the growth rate of the crystal was measured over time. It decreased

rapidly during the �rst 15 minutes of the experiment, after which it reached a con-
stant value. This is not expected if mass transport is completely di¤usion dominated,
because then the growth rate should keep decreasing until the entire growth container
becomes depleted. Possibly, due to the inhomogeneity of Geff , enough convection re-
mains for the growth rate to reach a constant value. However, during the simulations
with the inhomogeneous e¤ective gravity, the Sherwood number never reached a con-
stant value, which is likely caused by the 2-dimensionality of the simulations. This
can only be con�rmed by doing full 3D simulations.

7.3.2 Optimization

The presence of the additional vortices, the resulting shape of the depletion zone,
the erratic behavior of the solution near the crystal and possibly the constant growth
rate, are all direct and unwanted consequences of the inhomogeneity of the e¤ective
gravity. In ref. [8], we proposed two methods to reduce these e¤ects, �rst by tuning
the magnetic �eld pro�le, and second, by optimizing the container size with respect
to the inhomogeneity of Geff . As the �rst method can be quite di¢ cult, we apply
here the second approach. For this, the concept of the critical e¤ective gravity is
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Figure 7.3: Vector plot of the �ow velocity around a growing nickel sulfate crystal
after a simulation corresponding to 1500 s.

used. Below a critical value of the e¤ective gravity, buoyancy driven convection will
be suppressed because the driving force for convection cannot overcome the viscous
and frictional forces. Then, although the gravitational acceleration is not zero, mass
transport is completely determined by di¤usion. The critical e¤ective gravity can be
calculated using the 3-term model described in refs. [8] and [12].
In ref. [8] we proposed a criterion for the critical e¤ective gravity:

Geff (so) < Geffc (so) ; (7.8)

which means that Geff (so), the mean e¤ective gravity in the growth container
as function of the container size so, should be smaller than Geffc (so), the critical
e¤ective gravity as function of the container size so. Although using Eqn. 7.8 gives
an underestimate of the maximum allowable container size of 10-15% [8], it can be
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used as a rule of thumb. If a cubic crystal centered in a concentric growth container
is assumed, the critical e¤ective gravity can be calculated using the 3-term model, as
described in ref. [8], while the mean e¤ective gravity can be determined from the �eld
pro�le.Fig. 7.4 shows both the critical and the mean e¤ective gravity as function of

Figure 7.4: The mean and critical e¤ective gravity as function of the container size
for the growth of nickel sulfate crystals.

container size, for a 1 x 1 mm2 nickel sulfate crystal in the parabolic e¤ective gravity
pro�le of Fig. 7.1. Eqn. 7.8 is satis�ed left from the intersection point of the two
graphs, so below a container size of 4.5 x 4.5 mm2. For this optimized geometry, mass
transport is completely di¤usion determined, and the e¤ects of the inhomogeneity are
negligible.
An extreme example of the e¤ect of an inhomogeneous Geff was given in ref. [7],

where the �eld pro�le was chosen such that it varied linearly over the growth container.
Here Geff had a positive value above the crystal, and was negative below (Fig. 7.5).
If the �eld pro�le is included in the simulation, it results in two convection plumes,
one oriented upwards and one downwards, as can be seen in Fig. 7.5b. The result
from the simulation agrees very well with the experimental schlieren image of Fig.
4.8.
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Figure 7.5: (a) The e¤ective gravity pro�le used in the simulation. (b) Iso-
concentration lines depicting the depletion zone around the crystal from the simu-
lation. Two convection plumes are visible, one going up and one down.

7.4 Lysozyme experiments

In the experiments in ref. [6], a lysozyme crystal was seeded onto the wall of a 4 x 8
x 18 mm3 growth container �lled with supersaturated solutions, placed in a gradient
magnetic �eld and observed by shadowgraphy. For the simulations, the container and
crystal dimensions are translated to a 0.5 x 0.5 mm2 crystal attached to a 4 x 18 mm2

container, as shown in Fig. 7.6a. In the experiment, a di¤erent magnet was used than
for the nickel sulfate experiments, and a new e¤ective gravity pro�le was determined
from the �eld pro�le (Fig. 7.6b). The parameters used in the simulation are given in
table 7.2. From all the components in the protein crystallization solution, only the
lysozyme concentration was allowed to vary during the simulation.
Fig. 7.6c shows the concentration distribution after a simulation corresponding

to 3000 seconds. The depletion zone has extended to approximately the size of the
crystal, but a plume is still present, albeit weak. In the shadowgraphy images taken
during the experiment described in ref. [6] however, no plume was visible anymore.
Probably, the gradients in refractive index in the plume became smaller than the
detection limit of the shadowgraphy microscope. Also for this case, an optimization
was performed according to Eqn. 7.8. Fig. 7.7 shows both the critical and the
mean e¤ective gravity as function of container size, for a 0.5 x 0.5 mm2 crystal in the
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Table 7.2: Values used for the simulations of lysozyme crystal growth

Parameter Value
cb 3x10�2 g=cm3

ce 3x10�3 g=cm3

� 0.01 cm2=s
D 1x10�6 cm2=s
h 1 cm�1

g 981 cm=s2

� 0.3032
�0 1.0049 g=cm3

Figure 7.6: The geometry (a) and e¤ective gravity pro�le (b) used in the simulations
for the growth of lysozyme. The 0.5 x 0.5 mm2 crystal (gray) is placed on the wall
of a 4 x 18 mm2 container. (c) Simulated iso-concentration lines around a growing
lysozyme crystal after 3000 s of growth.
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Figure 7.7: The mean and critical e¤ective gravity as function of container size, for
lysozyme.

parabolic e¤ective gravity pro�le. Eqn. 7.8 is satis�ed left of the intersection point of
the two graphs, so below a container size of �2.3 x 2.3 mm2. This is almost half the
size found for the nickel sulfate optimization, and a lot smaller than the container used
in the experiment. Nevertheless, the large reduction of the growth rate from 30 to 2
�m/hr, observed in the experiment shows that convection was largely suppressed. The
fact that the crystal was seeded on the container wall helped considerably, because
the wall is a signi�cant source of friction, slowing down the �owing solution near the
crystal.

7.5 Discussion and conclusions

Although the simulations were 2-dimensional and simpli�ed, the comparison between
simulations and experiments shows a remarkable agreement for many observations.
Especially in the case of the nickel sulfate experiments, the simulations o¤er explana-
tions for the shape of the depletion zone and erratic �ows near the crystal, which could
not be easily obtained through experiments. We showed that for crystal growth in
gradient magnetic �elds, the e¤ects of an inhomogeneous e¤ective gravity �eld cannot
be ignored, and care should be taken to minimize the negative e¤ects, by optimiz-
ing growth container dimensions, by minimizing the inhomogeneity of the e¤ective
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gravity or by a combination of both. Combining experiments and simulations o¤ers a
powerful tool to study crystal growth from solution in microgravity, and can help to
determine the optimum conditions for (protein) crystal growth in gradient magnetic
�elds.



Bibliography

[1] E.H. Snell, J.R. Helliwell, Reports on Progress in Physics 68 (2005) 799
[2] C.E. Kundrot, R.A. Judge, M.L. Pusey, E. Snell, Crystal Growth & Design 1
(2001) 87

[3] T. Reichardt, Nature 404 (2000) 114
[4] N.I. Wakayama, Crystal Growth & Design 3 (2003) 17.
[5] P.W.G. Poodt, M.C.R. Heijna, P.C.M. Christianen, W.J.P. van Enckevort, W.J.
de Grip, K. Tsukamoto, J.C. Maan, E. Vlieg, Applied Physics Letters 87 (2005)
214105

[6] M.C.R. Heijna, P.W.G. Poodt, J.L.A. Hendrix, K. Tsukamoto, P.C.M. Christia-
nen, W.J.P. van Enckevort, W.J. de Grip, J.C. Maan, E. Vlieg, Applied Physics
Letters 90 (2007) 264105

[7] P.W.G. Poodt, M.C.R. Heijna, P.C.M. Christianen, W.J.P. van Enckevort, W.J.
de Grip, K. Tsukamoto, J.C. Maan, E. Vlieg, Crystal Growth & Design 6 (2006)
2275

[8] P.W.G. Poodt, P.C.M. Christianen, W.J.P. van Enckevort, J.C. Maan, E. Vlieg,
to be published

[9] www.pdesolutions.com
[10] F.C.G. DeMarco, C.R. DeAndrade, E.L. Zaparoli, International Communications
in Heat and Mass Transfer 30 (2003) 495.

[11] J.M. Coulson, J.F. Richardson, Chemical engineering (Pergamon Press, Oxford,
1964)

[12] P. Teertstra, M.M. Yovanovich, J.R. Culham, Thermophysics and Heat Transfer
20 (2006) 297

97



98 Part 1



Part II

The BAD method

99





Chapter 8

Buoyancy assisted di¤usion

limited crystal growth:

harnessing gravity to suppress

convection

A new upside-down geometry is proposed to achieve all the bene�cial e¤ects of mi-
crogravity crystal growth, by making use of buoyant forces instead of compensating
for them. We show by �nite element simulations and growth experiments on sodium
chlorate that crystal growth in an upside-down geometry leads to the formation of a
buoyancy assisted depletion zone. The e¤ects on growth rate and morphology that
are observed are all indicative of di¤usion limited growth, just as would happen in
the absence of gravity. The simplicity of this growth method o¤ers the possibility
to perform large scale protein crystal growth experiments under microgravity-like
conditions, without the requirement of compensating for gravity.

101
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8.1 Introduction

Microgravity protein crystal growth is believed to lead to an improvement of protein
crystal quality, compared to crystals grown under normal gravity [1]. This is highly
relevant, because for protein structure determination by X-ray di¤raction, protein
crystallization is often the quality limiting step. There are three major reasons why
crystal growth in the absence of gravity would result in higher quality crystals [1].
First, in the absence of buoyancy driven convection, di¤usion will become the sole
means of mass transport, accompanied by the formation of an extended depletion
zone. The interface supersaturation, and thus the growth rate will continuously de-
crease, so fewer defects will be formed. Second, large impurities like dimers will di¤use
even slower, decreasing their incorporation rate, known as di¤usional puri�cation [2].
Third, merging due to sedimentation of microcrystals will not occur.
Until recently, the only way to signi�cantly reduce the gravitational acceleration

for prolonged times was to go to space, where gravity is reduced to � 10�6g [1]. Many
protein crystal growth experiments have been performed on board Space Shuttles or
stations. However, the costs, low accessibility, and residual accelerations (g-jittering)
make this approach less practical. An alternative for space are gradient magnetic
�elds, in which a magnetic force compensates the gravitational force [3]. In chapter
5 it is shown that this technique can be used to suppress convection during growth
of lysozyme crystals, at a fraction of the cost and e¤ort of space based experiments.
In this chapter we describe another method to achieve the same bene�ts of crystal
growth in space or magnetic �elds, not by compensating for the gravitational force,
but by making use of it in an upside down geometry.
Consider a setup like in Fig. 8.1, where a growing crystal is located at the top

of a closed growth cell �lled with supersaturated solution. During growth of the
crystal, the solution near the crystal becomes depleted of solute. As the density
of the depleted solution decreases, it feels an upward buoyant force. For a freely
suspended crystal buoyancy driven convection would set in, but for the upside down
geometry there is no room for a convective �ow to develop. The depleted solution is
forced to accumulate at the top of the cell and fresh material has to be supplied from
below the crystal. Under the in�uence of buoyant forces, the depleted solution forms
a horizontally strati�ed depletion zone, expanding downwards, while convective �ows
cannot form. We will call this a Buoyancy Assisted Depletion (BAD) zone. During
the BAD zone formation, mass transport towards the crystal becomes increasingly
more di¢ cult, and the growth of the crystal becomes di¤usion limited. On top of
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Figure 8.1: Crystal growth in the upside-down geometry. A growing crystal is at-
tached to the top of a growth cell. Depleted solution is forced to accumulate at
the top because of buoyancy, leading to di¤usion limited growth. Also, sedimenting
microcrystals will not be incorporated into the growing crystal.

that, due to di¤usional puri�cation, impurity incorporation rates are reduced and,
for obvious reasons, sedimenting microcrystals will not be incorporated. Whereas
conventionally it requires suppression of gravity to achieve these conditions, using the
upside down geometry it is possible to harness gravity to achieve the same.
Although appearing similar, the method we propose is very di¤erent from that

of the hanging drop method, because in the latter method no depletion zone is
formed owing to the location of crystals at the air-solution interface and the e¤ects of
Marangoni convection. Our use of a completely �lled container overcomes this prob-
lem. Other growth geometries with the crystal on top have proposed before. Moreno
et al. [6] proposed the upside-down geometry as a method to slow down the di¤usion
of precipitant during protein crystal growth in gels, where convection is already sup-
pressed. Wakayama [7] proposed to use magnetic �elds to force growing crystals to
�oat at the solution-air interface. This would, however, lead to Marangoni convection
because of the surface tension gradients at the solution-air interface that accompany
the concentration gradients in the BAD zone [8].
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8.2 Theory

Figure 8.2: Iso-concentration lines indicating the depletion zone around a growing
sodium chlorate crystal at 0g (a) and 1g (b), for a simulation corresponding to 1
hour. Between the lines �c = 10�3 g=cm�3.

To investigate how the BAD zone formation a¤ects interface supersaturation and
growth rate, we used a simpli�ed model and analytically solved the di¤usion equation
to obtain the time and position dependent concentration. Assume a geometry like in
Fig. 8.1, where the z-coordinate is chosen parallel to the gravitational acceleration,
with the origin at the bottom facet of the crystal. To �nd an expression for the time-
and position dependent concentration c(r; t) in the growth cell, Fick�s second law,

@c(r; t)

@t
= r(D(r; t)rc(r; t)), (8.1)

with D the di¤usion coe¢ cient, has to be solved. If the height of the growth cell
is much larger than the size of the crystal, the cell can be approximated as being
semi-in�nite. Assuming that the concentration is uniform in the lateral plane and the
di¤usion coe¢ cient is constant, Eqn. 8.1 reduces to

@c(z; t)

@t
= D

@2c(z; t)

@z2
. (8.2)

Growth rates will be small, so moving boundaries are ignored. Furthermore, the
interfacial �ux, and thus the growth rate, is determined by a balance between mass
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transport towards the interface and interface kinetics. In the case of linear kinetics,
it is given by

D
@c(z; t)

@z

����
z=0

= � (c(z; t)jz=0 � ce) , (8.3)

with � the kinetic coe¢ cient andce the equilibrium concentration. Taking Eqn. 8.3
as boundary condition, and c(z; t)jt=0 = cb, with cb the bulk concentration, as initial
condition, the solution of Eqn. 8.2 can be determined via the Laplace transform
method [9] (appendix A) and is given by [10]

c(z; t) = (ce � cb)
�
erfc

�
z

2
p
Dt

�
� exp

�
hz + h2Dt

�
erfc

�
z

2
p
Dt

+ h
p
Dt

��
+ cb,

(8.4)
with h = �

D . The interface concentration ci can be found by evaluating Eqn. 8.4 for
z = 0:

ci(t) = c(z; t)jz=0 = (ce � cb)
�
1� exp

�
h2Dt

�
erfc

n
h
p
Dt
o�
+ cb. (8.5)

The growth rate vg is given by the interfacial �ux, multiplied by the volume of the
di¤using unit 
 (e.g. molecular volume):

vg(t) = D
@c(z; t)

@z

����
z=0


 = �Dh (ce � cb) exp
�
h2Dt

�
erfc

n
h
p
Dt
o

. (8.6)

In the case where crystal growth mechanisms give rise to non-linear kinetics, like
spiral growth, this derivation is not valid, and �nding analytical expressions is more
challenging.
If during the BAD zone formation, the growth process of the crystal becomes

limited by mass transport rather than by interface kinetics, the interface concentration
quickly reaches the equilibrium value and Eqns. 8.4 and 8.6 reduce to [10]

c(z; t) = (cb � ce) erf
�

z

2
p
Dt

�
+ ce; (8.7)

vg(t) =
D
(cb � ce)p

�Dt
: (8.8)
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So for a large enough value of h
p
Dt, the growth rate shows a behavior like

vg(t) _
1p
t
: (8.9)

A more precise description of the formation of a BAD zone is possible using �nite
element simulations. For this we used FlexPDE 5 from PDE solutions Inc [11]. The 2D
simulations are performed according to a procedure described in chapter 6, using a 2
x 0.5 mm2 crystal attached to the top of a 7 x 13 mm2 growth container. As a model,
we have used sodium chlorate crystal growth, for which Bennema [13] observed a
linear relationship between growth rate and supersaturation for low supersaturations,
and linear interface kinetics are assumed in the simulations. The parameters used for
the simulation are given in table 8.1 and are taken from Wang and Hu [14], with � the
kinematic viscosity, � the slope of the density as function of concentration and �0 the
density of the bulk solution. Figure 8.2a shows the depletion zone after a simulation
corresponding to 1 hour, in the absence of gravity (g = 0), where the depletion zone
has a hemispherical-like shape. Next, the same setup was simulated, but now with
a gravitational acceleration of 1g. Normally, this would result in buoyancy driven
convection and a thin boundary layer, leading to a steady state growth rate. However,
this does not occur in the upside down geometry, as can be seen in Fig. 8.2b. In this
case, depleted solution accumulates at the top of the growth container and, although
the gravitational acceleration is not zero, a wide BAD zone develops. Near the crystal,
the iso-concentration lines show a slight curvature around the crystal, while further
away, the buoyancy induced strati�cation of the depleted solution is clearly visible.
Fig. 8.3 shows the concentration gradient at the crystal interface as function of time,
which can be used as a measure for the growth rate. It shows a fast decease in the
beginning, after which it shows an asymptotic behavior towards zero, not reaching a
constant value. The curve can be �tted with a power law with an exponent of -0.5,
in agreement with Eqn. 8.9, indicating a fully di¤usion determined growth rate.

8.3 Experimental

In line with the simulations, sodium chlorate crystals were used to test the proposed
method. Crystals of 2.5 x 2.5 x 1 mm3 were glued onto a glass cover slide using
silicone glue. The rim of a 7 x 7 x 13 mm3 glass container with an open top was
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Figure 8.3: The growth rate as function of time of a sodium chlorate crystal grown
in the upside-down geometry, obtained from simulations. The power law �t has an
exponent of -0.5.

slightly coated with grease. Then, the container was �lled with a solution containing
0.745 g=cm3 sodium chlorate, and kept at a temperature of 20�1�C, corresponding
to a supersaturation of 3.3%. The cover slide with crystal is placed on the container,
where the grease acts as a seal to prevent evaporation. The growing crystal was
observed by schlieren microscopy in order to follow the development of the depletion
zone and growth rate. With schlieren microscopy, gradients in refractive index, for
instance caused by gradients in temperature or concentration, can be visualized [15].
The method is described in chapter 2.

8.4 Results

Fig. 8.4 shows schlieren images of the development of the BAD zone directly after
immersion of the crystal (a), after 4 minutes (b), after 14 minutes (c) and after 56
minutes (d). The crystal is indicated by the white area, while the black parts next
to the crystal are a projection of the sealing grease. White indicates a high and
dark gray a low concentration gradient. It can be clearly seen that the solution that
is depleted at the crystal interface spreads along the top of the growth container,



108 Part 2

Figure 8.4: Schlieren images of the development of a BAD zone around a growing
sodium chlorate crystal directly after immersion (a), after 4 minutes (b), after 14
minutes (c) and after 56 minutes (d). The crystal is indicated by the white area.
The black parts next to the crystal are a projection of the sealing grease. In (d)
convection plumes are visible that arise from from crystals nucleated at the bottom
of the container.
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Figure 8.5: The growth rate as a function of time of a sodium chlorate crystal grown
in the upside down geometry. The power law �t has an exponent of -1.3.

Figure 8.6: Iso-concentration lines of a simulation corresponding to 1 hour (a) and
growth rate as a function of time (b) obtained from a simulation where crystals are
also growing on the bottom of the growth cell. The black shapes represent growing
crystals. The power law �t has an exponent of -0.95.
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Figure 8.7: Iso-concentration lines of a simulation corresponding to 1000 seconds (a)
and growth rate (b) obtained from a simulation for three crystals in the upside down
geometry, where the black shapes represent growing crystals. The power law �t has
an exponent of -0.5.

Figure 8.8: (a) The morphology of sodium chlorate crystals grown at low supersatu-
ration. (b) Side and (c) bottom view of a sodium chlorate crystal grown in the upside
down geometry. (d) and (e) show the contours of the crystal, where the depression is
highlighted.
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Table 8.1: Values used for the simulations

Parameter Value
cb 0.714 g=cm3

ce 0.7 g=cm3

� 1.3x10�2 cm2=s
D 1.5x10�5 cm2=s
h 200 cm�1

� 0.55
�0 1.043 g=cm3

forming a strati�ed BAD zone slowly expanding downwards, as was already indicated
by the simulations. The growth rate of the crystal was measured by recording the
displacement of the crystal�s bottom (100) face during growth (Fig. 8.5). It shows
a continuously decreasing behavior, never reaching a constant value, as is expected
for di¤usion determined mass transport. From Eqn. 8.9 and the simulations, for
large t a power law behavior is expected, with an exponent of -0.5. However, if the
experimental results are �tted with a power law, the exponent has a value of -1.3. The
growth rate decreases faster than as expected from Eqns. 8.6 and 8.8. One reason for
this is the nucleation and growth of crystals on the bottom of the growth container.
Despite �ltering of the solution, formation of these crystals was not prevented. While
these crystals are growing on the bottom of the container, they deplete solution that
rises toward the top of the container, where it merges with the BAD zone. The
convection plumes associated with this process are clearly visible in �gure 8.4d. In
this way the depletion zone expands faster and the concentration gradient decreases
faster than would be expected, slowing down the growth rate more.
To model this, a new simulation was performed, with growing crystals on the

bottom of the growth container, represented by triangles to describe their irregular
orientation on the bottom (Fig. 8.6a). The concentration gradient at the crystal
interface was again taken as a measure for the growth rate, where a power law �t
showed an exponent of -0.95 (Fig. 8.6b). Although much lower than -0.5, the exponent
is not as low as found experimentally. The discrepancy between the exponent derived
from the simulation and experiment may be caused by the fact that the simulations
are 2D, while the experiment is 3D. Furthermore, the exponent depends on the rate
of depletion of the solution by the bottom crystals, and thus on their surface area. In
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Figure 8.9: The concentration gradient along the bottom face of a sodium chlorate
crystal, growing in the upside-down geometry, after a simulation corresponding to 1
hour.

principle, the supply of depleted solution from below makes the e¤ects of the upside
down growth geometry more pronounced, and thus more e¤ective. However, the �uid
�ow induced by the rising solution can disturb the BAD zone, degrading its bene�cial
e¤ects.
In the experiment described above, one single seed crystal was used. If a growth

experiment includes a nucleation phase, it is likely that there will be more than one
small crystal to start with. How this in�uences the formation of a BAD zone was
investigated by simulations. Fig. 8.7a shows the BAD zone around 3 small crystals in
the upside down geometry. In the early stages of growth, a hemispherical depletion
zone is formed around the individual crystals. However, soon these depletion zones
spread and merge to form the typical BAD zone. A �t to the concentration gradient
at the interface of the crystals again shows a power law behavior with an exponent of
-0.5 (Fig. 8.7b).
The growth of sodium chlorate crystals in the upside down geometry has a pro-

found e¤ect on the morphology of the crystals. Under normal conditions, sodium
chlorate crystals have a cubic morphology bounded by six {100} planes, but often
with a �attened shape [16]. When supersaturations at the crystal interface are low,
additional faces appear; four polar {111} type faces and twelve {110} and {120} type
faces [16], as shown in Fig. 8.8a. These additional faces are indeed observed on crys-
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tals grown in the upside down geometry, indicating the pronounced e¤ect of the BAD
zone on the interface supersaturation. Fig. 8.8b and c show a side and a bottom im-
age respectively, of a sodium chlorate crystal grown for two days in the upside-down
geometry, where some of the faces are indicated. At the top of the crystal, where it
was glued to the cover slide, the faces show an irregular shape. In this part the crystal
contains a lot of inclusions and irregularities, caused by the presence of the glue and
the cover slide. At the bottom (100) face of the crystal, a large square depression is
visible centered on the face, approximately a quarter of the crystal thickness deep.
For clarity, this depression is highlighted in the contour of the images, as can be seen
in Fig. 8.8d and e. This is an e¤ect of the BAD zone. If during crystal growth
mass transport is completely di¤usion determined, like in the upside-down geometry,
morphologically instable or hopper growth can occur [17]. Fig. 8.9 shows the concen-
tration gradient along the bottom face of a growing sodium chlorate crystal, obtained
from the simulations. Near the edges of the crystal, the concentration gradient, and
thus the growth rate, is higher than at the middle of the crystal face. The �at shape
of the crystal face becomes unstable, turns concave and, if growth continues, a hole
forms in the crystal face.

8.5 Discussion and conclusion

In this chapter we have demonstrated a method to achieve all the bene�cial e¤ects
of microgravity crystal growth, not by compensating gravity, but by making use of
it. We have shown by simulations and experiments that by growing sodium chlorate
crystals in an upside-down geometry, a buoyancy assisted depletion zone is formed.
The corresponding reduction of the interfacial supersaturation leads to a signi�cant
decrease of the growth rate and has profound e¤ects on the morphology of the grown
crystals. All these e¤ects are typical for di¤usion limited crystal growth, showing that
upside-down crystal growth can be used as an alternative for microgravity, without
the experimental complexities. The simplicity of the upside-down method allows
for a combination with techniques widely used in protein crystallization, like batch
crystallization and screening of crystallization conditions, with the possible bene�cial
e¤ects of microgravity, in the laboratory. Studying the e¤ects of upside-down crystal
growth on protein crystallization, focussing on the crystal quality, is the next step.



114 Part 2

8.6 Appendix.

Rede�ning concentration and time as ' = c (z; �) � cb, with � = Dt, Eqns. 8.2 and
8.3 become

@'

@�
=
@2'

@z2
, (A1)

@'

@z

����
z=0

= h ('jz=0 + cb � ce) , (A2)

with h = �=D. The initial condition becomes 'j�=0 = 0.
Using Eqn. A2 as boundary condition, Eqn. A1 can now be solved by application

of the Laplace transform that removes the time variable from Eqn. A1, leaving an
ordinary di¤erential equation. The Laplace transform of f(t) is de�ned by

L (f(t)) =
1Z

0

f(t) exp [�pt] dt, (A3)

where p is a number su¢ ciently large to make the integral converge. Tables of Laplace
transforms can be found in, for instance, ref. [9]. The Laplace transform of the left
term of Eqn. A1 in terms of � is given, through integration by parts, by

1Z

0

@'

@�
exp [�p� ] d� =

0

@[' exp [�p� ]]10 + p

1Z

0

' exp [�p� ] d�

1

A = p', (A4)

with ' the Laplace transform of ': The term in the square brackets vanishes because
of the initial condition. The Laplace transform of the right term in Eqn. A1 is given
by

1Z

0

@2'

@z2
exp [�p� ] d� = @2

@z2

1Z

0

' exp [�p� ] d� = @2'

@z2
. (A5)

Eqn. A1 then becomes

p' =
@2'

@z2
, (A6)
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having a solution in the form of

' = k exp [�ppz] . (A7)

The Laplace transforms of the left and right terms of the boundary condition A3 are
given by

1Z

0

@'

@z

����
z=0

exp [�p� ] d� = �kpp, (A8)

1Z

0

h ('jz=0 + cb � ce) exp [�p� ] d� = h
�
k +

cb
p
� ce
p

�
. (A9)

Because A8=A9, k can be obtained, with which Eqn. A7 becomes

'

(ce � cb)
=
h exp

�
�ppz

�

p
�p
p+ h

� . (A10)

To �nd an expression for '(z; t), the inverse Laplace transform of Eqn. A10 has to
be found. From ref. [9], the inverse transform of the right term of Eqn. A10 is given
by

L�1
 
h exp
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= erfc
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�
. (A11)

Knowing that ' = c(z; �) � cb and � = Dt, the expression for the concentration
becomes

c(z; t) = (ce � cb)
�
erfc

�
z

2
p
Dt

�
� exp

�
hz + h2Dt

�
erfc

�
z
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p
Dt

+ h
p
Dt

��
+ cb:

(A12)
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Chapter 9

Buoyancy assisted di¤usion

limited growth of lysozyme

crystals

The upside-down crystal growth method is applied to the growth of tetragonal hen
egg-white lysozyme using silanized mica nucleation substrates. In this way, elongated
and optically perfect crystals were obtained, demonstrating growth at low supersatu-
ration caused by a buoyancy assisted depletion zone. The crystal quality was veri�ed
by X-ray di¤raction measurements. For small crystals, the quality of the di¤raction
data sets was limited by crystal size, while for larger crystals it was limited by the
detector size. No e¤ects of the growth method on X-ray crystal quality could be
observed, indicating that the lysozyme crystals, even the ones with lower quality, are
already of such perfection that improvement could not be detected.
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9.1 Introduction

In the previous chapter, the upside-down crystal growth method was introduced. It
was shown that this growth geometry, not to be confused with the hanging drop
method [1], leads to the formation of a Buoyancy Assisted Depletion (BAD) zone and
a corresponding growth rate behavior that is typical for di¤usion limited growth. As
a result from our observations, we stated that this technique can possibly be added
to the list of alternatives for microgravity protein crystal growth in space, next to
gel growth [2, 3], micro�uidics [4] and gradient magnetic �elds (chapter 5). In this
chapter, methods to achieve crystal growth on a crystallization substrate, necessary for
the formation of a BAD zone, are discussed. An example is given for lysozyme crystal
growth, for which the e¤ect of the BAD method on crystal quality was investigated
using X-ray di¤raction.

9.2 The nucleation substrate

For an ideal growth experiment in the BAD geometry, the protein crystals should
only nucleate and grow on the top cover of the growth container and not in the bulk
solution or on the other walls of the container. This can be realized by using a solutal
composition that is positioned in the metastable zone of the phase diagram [1], and by
taking care that the solution is free of potential sources for heterogeneous nucleation,
like dust particles. In general, the barrier for nucleation on the container walls will be
smaller than in the solution and contact nucleation will take place [6]. If, however, as
top cover of the growth container a substrate is used that has an even lower nucleation
barrier, nucleation will take place preferentially on this substrate. The height of the
nucleation barrier depends on the roughness of the substrate, the interactions between
the substrate surface and protein molecules, and, in case of crystalline substrates, the
lattice mismatch between the protein crystal and substrate.
It is possible to choose or engineer a substrate to achieve preferential nucleation by

in�uencing one or a combination of these factors. Attempts to do so can be classi�ed
in three categories. First, by chemical modi�cation of substrates, like silanizing glass
or mica to change the hydrophobicity of the surface [7, 8], or treating surfaces with
poly-L-lysine [9], poly-L-aspartate [10], lipids [11] and fatty acids [12], which facilitate
nucleation by electrostatic interactions with the protein molecules. Second, by using
physically modi�ed substrates, like porous glass, silicon or polycarbonate [13, 14] to
lower the nucleation barrier by reduction of the surface free energy. Finally, mineral
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substrates can be used because possible epitaxial relationships between protein crys-
tals and the mineral may exist [15]. Up to now, no universal nucleation substrate
has been found, and di¤erent techniques have to be applied for individual proteins.
Thus to determine which method works best for which protein is still a question
of trial and error. However, �nding the proper nucleation substrate can be part of
the screening process for optimal crystallization conditions, next to, for example pH,
supersaturation and precipitants.
To test whether protein crystal growth in the BAD geometry really leads to im-

provement of protein crystal quality, tetragonal hen Egg-White Lysozyme (HEWL)
crystals were grown in both the BAD and the normal geometry. As a nucleation sub-
strate, silanized mica was used, according to the recipe described by Tang et al. [8].
This particular substrate gives nicely separated HEWL crystals, which can be easily
removed from the substrate for further handling. Crystal removal can be a problem
for untreated glass substrates, because the crystals adhere strongly and are easily
damaged while trying to remove them.

9.3 Substrate preparation and crystal growth

A mica sheet (muscovite) was cleaved and submerged in a 1% (v/v) 3-aminopropyl
triethoxysilane solution in water. After 5 minutes, the sheets were washed using
demineralized water and heated in a stove at 110�C for 2 hours. The sheets are cut in
1.5 by 1.5 cm2 pieces and stored in a desiccator. The lid of a 0.5 ml eppendorf tube is
cut o¤, the rim slightly greased with vacuum grease and the tube �lled up to the top
with a solution containing 10 mg/ml lysozyme hen egg-white lysozyme (Sigma, lot
094K1454) and 4 wt% sodium chloride in a pH 4.5 acetate bu¤er. Next, the silanized
mica sheet is placed with the cleaved side on the rim of the eppendorf tube and gently
pressed, so that the grease acts as a seal to prevent evaporation. Finally, the tubes
are stored at a constant temperature of 16.5�C until crystals of the required size are
obtained.
For faster results, a nucleation step can be included. To do so, a 2.62 mm thick,

6.02 mm inner diameter rubber quad-ring (Eriks, Alkmaar, the Netherlands) is placed
on a glass cover slide, and �lled with the lysozyme solution. The cleaved side of the
silanized mica is placed on top of the rubber ring and pressed to close the cell, where
the capillary force of the solution holds the parts together. After this, the growth cell
is placed in a refrigerator for 5-10 minutes, until tiny microcrystals can be seen on
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the mica surface under a microscope. The mica sheets are then lightly �ushed with
bu¤er solution and placed on top of the �lled eppendorf tube.

9.4 Results

Despite the specially prepared mica sheet, tetragonal HEWL crystals nucleated on all
the walls of the eppendorf tube. The density of crystals on the mica substrate was
actually lower than on the walls of the eppendorf tube, leading to nicely separated,
individual crystals. Of all the HEWL crystals we grew, the ones that grew on the
mica substrate in the BAD geometry showed the highest optical perfection and were
completely transparent. The faces were smooth and well de�ned, showing no cracks.
The majority of the lysozyme crystals on the mica surface grew with their c-axis par-
allel to the substrate or with a small angle with respect to this. All these crystals were
elongated or even needle-like along the c-axis. Fig. 9.1 shows examples of a crystal
grown in a conventional way (a) and of a crystal grown in the BAD geometry (b).
Durbin and Feher [16] and Grimbergen et al. [17] found that the morphology of tetrag-
onal lysozyme changes with supersaturation, where crystals become elongated along
the c-axis for lower supersaturations, because of the di¤erent growth rate behavior of
the {110} and {101} faces of the crystals (Fig. 9.2).As the bulk supersaturation used
would normally give rise to short crystals, the elongated crystals on the substrate
indicate that these crystals grew at a low local supersaturation, as expected by the
presence of a BAD zone.

Figure 9.1: HEWL crystals grown in the normal growth geometry (a) and in the
upside-down geometry (b), with the c-axis oriented horizontally.
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Figure 9.2: The growth rate of the (101) and (110) faces of tetragonal HEWL crystals
as function of supersaturation, and its e¤ect on the morphology [16,17].

For protein crystallographers, however, it is the X-ray di¤raction quality that is
of interest, while the optical quality is hardly relevant. To get an indication whether
HEWL crystal growth in the BAD geometry leads to an improvement of the X-ray dif-
fraction quality of the crystals, complete data sets were measured of four upside-down
grown and three normally grown crystals. The crystals were all grown according to
the above protocol, where for the normally grown crystals the eppendorf tubes were
stored with the mica substrate down. The selected crystals were soaked in a 20%(v/v)
glycerol solution and cooled in a 100K nitrogen stream during the measurements. The
data sets were collected on a 345 mm MAR research image plate (MarResearch, Ham-
burg, Germany). The rotation range per image was 1� and the detector was set at a
distance of 100 mm from the crystal. Each image was exposed for 10 minutes using a
Cu-K� rotating anode X-ray source (FR591, Bruker Nonius, Delft, the Netherlands).
The maximum resolution at the edge of the detector was 1.55 Å. The data was ana-
lyzed with MOSFLM v. 6.2.5 and SCALA v. 3.2.21 [18]. The results are shown in
Table 9.1 and Figs. 9.3 and 9.4. No unique �gure of merit exists for characterizing
the X-ray quality of crystals and thus we list several [19]. Rmerge is a measure of
agreement among multiple measurements of the same re�ections between di¤erent
measurements being in di¤erent frames of data or di¤erent data sets [20]. Rmerge is
calculated as
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Table 9.1: The results of X-ray di¤raction data analysis

Crystal 1 2 3 4 5 6 7
BAD geometry X X X X
Volume (10 3 �m3) 432 640 700 1792 3200 4000 5376
Resolution (�A) 1.9 1.7 1.7 1.55 1.55 1.55 1.55
Rmerge (cuto¤ at 1.9�A) 12.1 6.6 7.0 4.1 3.9 3.7 3.8
1.9 �A resolution shell:
Rmerge 48.9 21.1 24.5 9.0 6.8 7.0 6.7
Rr:i:m: 52.6 22.7 26.5 9.7 7.4 7.5 7.2
Rp:i:m: 19.1 8.4 10.0 3.6 2.7 2.7 2.6
I=� 4.4 9.2 7.4 16.6 24.5 24.9 26.1
Mosaicity (degrees) 0.40 0.38 0.34 0.44 0.47 0.48
a = b (�A) 78.883 78.818 78.957 78.870 78.871 78.811 78.881
c (�A) 36.978 36.986 37.031 37.012 36.982 36.982 37.004

Rmerge =

X

hkl

X

i

���Ii(hkl)� I(hkl)
���

X

hkl

X

i

Ii(hkl)
, (9.1)

with Ii(hkl) the the intensity of the ith (hkl) re�ection and I(hkl) the average intensity
of multiple observations. The lower Rmerge, the better the quality of the X-ray data
set. It can be determined for the entire data set as well as for a single resolution shell.
Rmerge does not only depend on the quality of the crystal, but also on the redundancy
of the data, which is the number of measured re�ections divided by the number of
unique re�ections. This can be corrected for by using the Redundancy Independent
Merging R factor, Rr:i:m:, sometimes also called Rmeas, given by [19]

Rr:i:m: =
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h
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iX
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���

X

hkl
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; (9.2)

with N the redundancy. Another indicator that can be calculated is the Precision
Indicating Merging R factor, Rp:i:m:, describing the precision of the averaged mea-
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Figure 9.3: The resolution as function of crystal volume. The encircled points repre-
sent the crystals grown in the upside-down geometry.

surement and is given by [19]

Rp:i:m: =

X

hkl

h
1= (N � 1)1=2

iX

i

���Ii(hkl)� I(hkl)
���

X

hkl

X

i

Ii(hkl)
. (9.3)

Other indicators measured are the resolution, the signal-to-noise ratio I=� and the
mosaic spread.
In table 9.1, the data set resolution is given for each crystal. If the resolution is

plotted versus the crystal volume (Fig. 9.3), there is a clear size dependency below
�1500 x 103 �m3, while for larger volumes, the resolution is limited by the detector.
The actual resolution for the larger crystals is probably higher. However, no e¤ect
of the growth method is visible in the resolution. The lowest resolution measured
was 1.9 Å for crystal 1. To make a fair comparison between the crystals, Rmerge was
determined for all data sets using a cuto¤ at 1.9 Å (Fig. 9.4). In addition, Rmerge,
now together with Rr:i:m, Rp:i:m and I=�, was also determined for the 1.9 Å resolution
shell, all showing a similar behavior as in Fig. 9.4, a clear size dependency for small
crystals and a more or less constant value for larger crystals. The signal-to-noise
ratio shows a size dependency for all crystal sizes. This indicates that the R values
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Figure 9.4: Rmerge for the entire dataset with a cuto¤ at 1.9 �A as a function of
crystal volume. The encircled points represent the crystals grown in the upside-down
geometry.

for small crystals are limited by the size of the crystal and for larger crystals by the
detector size. However, none of the measurements, including the mosaicity, show any
e¤ect of the growth method. The quality of the data set is limited by crystal and
detector size, but apparently not by crystal quality.

9.5 Discussion and conclusion

The BAD crystal growth method shows great potential as an alternative for micro-
gravity although no quality improvement could be observed in the X-ray di¤raction
analysis of HEWL crystals grown in the BAD geometry. The quality of the data sets
was determined either by the crystal or detector size, and not by crystal quality. In
other words, the HEWL crystals grown are all of very good X-ray quality, including
the normally grown crystals. Any di¤erences in quality are so subtle that they are in-
signi�cant, at least for the parameters determined in this analysis and the laboratory
set-up used here, an observation also made by Weiss [19]. So, HEWL is a wrong model
system as the crystals are already very good and there is little room for improvement.
This, however, does not mean that the method does not work. The elongated mor-
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phology of the BAD grown crystals as well as their optical perfection point to growth
at a low supersaturation, which can only be explained by the presence of a BAD zone.
To prove that the BAD method can improve crystal quality, synchrotron radiation
could be used to reach better resolutions, or other protein crystals have to be used
that have an intrinsically low quality, so that there really is something to improve.
What makes this technique unique with respect to other alternatives for micro-

gravity crystal growth is its simplicity and compatibility with already well established
techniques in the protein crystallography community, like high throughput crystal-
lization and automated screening of crystallization conditions. It o¤ers the possibility
to improve the quality of protein crystals and to study the e¤ects of convection free
crystal growth, without requiring complicated experimental conditions.
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Summary and outlook
Introduction
Protein crystal growth in microgravity is believed to yield higher quality crystals

than their terrestrial grown counterparts, because of the suppression of buoyancy
driven convection, di¤usion limited transport of protein molecules and the reduction
of the growth rate, impurity incorporation and sedimentation. The quality of a pro-
tein crystal is important for determining the molecular structure of the protein by
X-ray crystallography, because the better the crystal quality the higher the accuracy
of the determined molecular structure. Because good quality protein crystals can be
very di¢ cult to grow, the crystal quality is often the limiting factor in the structure
determination process. That is why a considerable e¤ort has been put in growth of
protein crystals in microgravity in space. The high costs, complexity and low accessi-
bility can make this approach less practical however. On top of that, although space
growth experiments have a history of over 25 years, the answer whether microgravity
crystal growth really leads to an improvement of protein crystal quality is still not
conclusively answered.
This thesis describes research performed on two alternative methods for improving

protein crystal quality without having to go to space; by gradient magnetic �elds and
by an upside-down geometry.

Part 1
With gradient magnetic �elds, a magnetic force can be applied on an object that

compensates the gravitational force to let it appear weightless. Demonstrations of lev-
itation by gradient magnetic �elds raised the question whether this technique could
also be used for creating a microgravity-like environment for protein crystal growth.
If so, it would o¤er an alternative for experiments in space. The levitation of dia-
magnetic materials is possible with commercially available superconducting magnets.
However, experiments with growing crystals levitating in gradient magnetic �elds
showed that levitation is not the proper condition. Instead, the variation of the mag-
netic and gravitational force with concentration has to be taken in account, resulting
in a factor 3 higher product of magnetic �eld and gradient for suppression of convec-
tion than for levitation of diamagnetic protein solutions, and a factor 3 smaller for
paramagnetic solutions. This brings creating a microgravity like condition for dia-
magnetic protein crystal growth beyond the reach of most magnet facilities. The High
Field Magnet Laboratory at the Radboud University Nijmegen, however, possesses
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magnets that can reach these conditions, o¤ering the unique possibility to study the
e¤ects of suppression of convection on crystal growth in great detail.
The possibility to suppress convection with gradient magnetic �elds was inves-

tigated with nickel sulfate hexahydrate and hen egg-white lysozyme crystal growth.
Although nickel sulfate is not a protein, it is much easier to handle than proteins and
acts as a model system to study the e¤ects of the magnetic �eld on the �uid dynam-
ics, mass transport and crystal growth. It is also paramagnetic, requiring a much
lower gradient magnetic �eld than for diamagnetic materials to suppress convection.
Special microscopes were constructed that �t in the bore of the magnet and that can
not only visualize the growing crystal but also concentration gradients and convective
�ows, as described in chapter 2.
Chapter 3 shows the �rst experimental example of suppression of convection dur-

ing crystal growth by gradient magnetic �elds. A nickel sulfate crystal growing in a
gradient magnetic �eld was observed by schlieren microscopy to visualize the disap-
pearance of the convection plume and the formation of a wide depletion zone, just as
would happen in microgravity. The use of magnetic �elds, however, o¤ers the unique
possibility to tune the e¤ective gravitational acceleration, and thus the amount of
convection, even including negative gravity.
The tunability of the amount of convection is explored in depth in chapter 4, where

the width of the depletion zone was measured as a function of the e¤ective gravity
by varying the gradient magnetic �eld, showing a behavior as expected from �uid
dynamics theory. The growth rate shows a signi�cant decrease when convection is
suppressed. An analysis of the �eld pro�le of the magnet used shows the importance
of choosing the proper position within the magnet to minimize the inhomogeneity
of the e¤ective gravity. Nevertheless it is shown that in the vicinity of the crystal,
e¤ective gravitational accelerations in the milligravity range were still su¢ cient to
suppress convection.
The next step was to suppress convection for crystal growth of a diamagnetic

protein. Although technically challenging due to the high gradient magnetic �elds
required, in chapter 5 it is shown that for protein solutions, convection can also
be suppressed during crystal growth. Using shadowgraphy, the disappearance of
the convection plume during lysozyme crystal growth was visualized, showing that
gradient magnetic �elds can be used as an alternative for microgravity. However, the
very high gradient magnetic �eld required to do this for diamagnetic proteins (-4500
T2/m) imposes a restriction on the growth experiments, because these high magnetic
�elds can only be sustained for a few hours, much too short to perform a full growth
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experiment. So unfortunately, checking whether growth under these conditions leads
to an improvement of crystal quality could not be done.
In most crystal growth experiments, the drag on the �owing solution during con-

vection that is caused by the walls of the growth container cannot be ignored. If
crystal growth from solution takes place in a closed container, a critical gravitational
acceleration can be de�ned, below which buoyancy driven convection is suppressed
and mass transport is completely determined by di¤usion at gravitational accelera-
tions higher than 0g. In chapter 6, using �nite element simulations and an analytical
model, we show that it is possible to predict this critical value. This result can
be used to optimize growth conditions for microgravity protein crystal growth, if the
gravitational acceleration cannot be cancelled completely, like in space, or is cancelled
inhomogeneously, like in gradient magnetic �elds.
In chapter 7, the �nite element simulations are extended to compare them to

the experiments on crystal growth in gradient magnetic �elds for nickel sulfate and
lysozyme. These simulations include the inhomogeneous e¤ective gravity that accom-
panied the magnet experiments, giving further insight into the observations described
in chapters 3 to 5.

Part 2
Part 2 of this thesis discusses another method to suppress convection for the

improvement of protein crystal quality. In chapter 8, a new method is proposed to
achieve all the bene�cial e¤ects of microgravity crystal growth, by making use of
buoyant forces instead of compensating for them, by using an upside-down geometry.
We show by �nite element simulations and growth experiments on sodium chlorate
that crystal growth in an upside-down geometry leads to the formation of a buoyancy
assisted depletion zone. The e¤ects on growth rate and morphology that are observed
are all indicative of di¤usion limited growth, just as would happen in the absence of
gravity. The simplicity of this growth method o¤ers the possibility to perform large
scale protein crystal growth experiments under microgravity-like conditions, without
the requirement of compensating for gravity.
In chapter 9, the upside-down crystal growth method is applied to the growth of

tetragonal hen egg-white lysozyme using silanized mica nucleation substrates. The
morphology of the grown crystals indicates growth at low supersaturation caused by a
buoyancy assisted depletion zone. The crystal quality was veri�ed by X-ray di¤raction
measurements. No e¤ects of the growth method on X-ray crystal quality could be
observed, indicating that the lysozyme crystals, even the ones with lower quality, are
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already of such perfection that improvement could not be detected.

Conclusion and outlook
The question whether crystal growth in gradient magnetic �elds really helps to

increase crystal quality could not be answered because the required conditions could
not be sustained long enough for a complete growth experiment. To overcome this, a
custom magnet has to be constructed that can sustain high gradient magnetic �elds
for a long period of time with a considerable homogeneity. Another option is to
focus on paramagnetic proteins which require much lower gradient magnetic �elds,
so that the current equipment can be used. Either way, the use of gradient magnetic
�elds is a very promising technique for the improvement of protein crystal quality.
Although no proof was obtained that supports this, all the boundary conditions that
are held responsible for crystal quality improvement in microgravity, like suppression
of convection, di¤usion limited mass transport and a reduced growth rate, are shown
to be present. In fact, this brings this technique more or less in the same position
as crystal growth in space! An added bene�t is the ability to control the amount of
convection by tuning the magnetic �eld. This can also be of interest for other �elds
of research in �uid dynamics, heat/mass transport, cavitation, or any other system
where gradients in magnetic susceptibility are present. With gradient magnetic �elds,
the amount of convection becomes a newly accessible variable.
The upside-down crystal growth method shows great potential as an alternative

for microgravity crystal growth, because of its simplicity and compatibility with well
established crystallization methods. However, more research is required, for instance
on the nucleation substrate and the in�uence of the shape and size of the growth
container on the formation of the buoyancy assisted depletion zone. Nevertheless, this
technique �nally o¤ers the possibility to answer the question whether suppression of
convection and all its related phenomena really can improve the quality of protein
crystals.
The research that lead to this thesis is the results of a cooperation between physi-

cists, chemists, crystallographers and biologists, combining theoretical and experi-
mental knowledge in crystal growth, magnet technology, optics, �uid dynamics, crys-
tallography and biochemistry. It is my opinion that such a cooperation is vital in
succeeding to �nd ways to improve the quality of protein crystals (and of course for
many other scienti�c subjects). For the future, the questions to be answered are:
what is it that we actually want to improve, how do we de�ne quality and how do we
measure it, and which experimental techniques, diagnostical methods and theoretical
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insights can be used? These are questions a single chemist, physicist or biologist can-
not answer. The only way to do it, independent of which technique will be used, is
by learning from each other.
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Samenvatting

Inleiding
Proteïnen, in de volksmond ook wel eiwitten genoemd, is een verzamelnaam voor

een grote groep moleculen die een zeer belangrijke rol in het leven spelen. Proteïnen
dienen onder andere als bouwmateriaal, transporteurs en regelaars in alle levende
organismen. Voor biologen, medici en farmaceuten is het zeer interessant om te
weten hoe de verschillende proteïne moleculen functioneren. Enerzijds omdat het
een fundamenteel inzicht kan bieden over hoe het �leven� werkt, maar ook omdat
het dan wellicht mogelijk is gericht medicijnen te ontwikkelen die de functie van een
proteïne molecuul beïnvloeden om ziekten te genezen. Hiervoor is het noodzakelijk
om de vaak ingewikkelde moleculaire structuur van het betre¤ende proteïne te kennen.
Wetenschappers hebben de afgelopen decennia methoden ontwikkeld waarmee ze zeer
nauwkeurig de structuur van moleculen kunnen bepalen, door ze te bestralen met
röntgenstraling en te meten hoe deze straling wordt verstrooid. Dit lukt echter alleen
als er heel veel van dezelfde moleculen heel dicht en netjes geordend op elkaar gepakt
zijn in een kristal.
Het groeien van een kristal van proteïne moleculen gebeurt vanuit een oplossing

en is niet wezenlijk anders dan het groeien van bijvoorbeeld een suikerkristal, het gaat
alleen een stuk lastiger. Het resultaat van de vaak langdurige proteïne kristalgroei
experimenten zijn meestal kleine en kwalitatief slechte kristallen. Dit is een probleem,
want hoe slechter het kristal, hoe onnauwkeuriger de moleculaire structuurbepaling
met röntgenstraling. Er wordt dus �ink gezocht naar methoden om betere kwaliteit
proteïne kristallen te verkrijgen, en hiervoor worden letterlijk kosten noch moeite
bespaard. Bijvoorbeeld door de kristallen in de ruimte te groeien.
In de ruimte is het kristal en zijn oplossing gewichtloos. Het groeien van pro-

teïnekristallen in gewichtloosheid zou kristallen van betere kwaliteit moeten opleveren
dan onder normale, aardse omstandigheden. Dit heeft te maken met de invloed van
de zwaartekracht op de oplossing van waaruit het kristal groeit. Kleine dichtheidsver-
schillen die in de oplossing ontstaan doordat proteïne moleculen vanuit de oplossing
in het kristal verdwijnen, leiden onder invloed van zwaartekracht tot vloeistofstro-
mingen in de oplossing; een proces dat convectie wordt genoemd. Deze stromingen
transporteren onzuiverheden naar het kristal die in het ingebouwd kunnen worden en
nieuwe proteïne moleculen waardoor het kristal relatief snel kan blijven groeien. Daar-
naast kunnen andere kleine kristallen in de oplossing naar beneden zakken, op elkaar
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vallen en ingebouwd worden, wat sedimentatie wordt genoemd. Al deze processen
kunnen leiden tot kristallen van slechte kwaliteit.
In gewichtloosheid zal convectie niet kunnen ontstaan. Nieuwe proteïne moleculen

moeten nu door di¤usie naar het groeiende kristal getransporteerd worden, wat veel
langzamer gaat dan door convectie. Hierdoor zal de groeisnelheid afnemen waar-
door de proteïne moleculen rustig de tijd hebben om netjes in het kristal te worden
ingebouwd. Ook zullen veel minder onzuiverheden ingebouwd worden en zal sedi-
mentatie niet plaats vinden. De verwachting is dat dit tot een verbetering van de
kristalkwaliteit leidt. Om deze reden zijn er veel pogingen gedaan om goede proteïne
kristallen te groeien in de ruimte. De hoge kosten, de complexiteit en geringe toe-
gankelijkheid maken deze aanpak echter minder praktisch. Bovendien is, ondanks een
historie van meer dan 25 jaar, de vraag of kristalgroei in gewichtloosheid echt betere
kristallen oplevert nog steeds niet compleet beantwoord.
Dit proefschrift beschrijft onderzoek naar twee alternatieve methoden voor het

uitschakelen van convectie tijden de groei van proteïne kristallen om zo betere kristallen
te verkrijgen, zonder naar de ruimte te gaan. Dit kan door kristalgroei in hoge mag-
neetvelden (deel 1) en door middel van de BAD methode (deel 2).

Deel 1
Met een gradiënt magnetisch veld kan een magnetische kracht worden uitgeoe-

fend op een object. Dit kan gebruikt worden om de zwaartekracht te compenseren,
zodat het object gewichtloos lijkt. De magnetische kracht wordt hierbij bepaald
door het product van de magnetische veldsterkte en de gradiënt van de magnetis-
che veldsterkte. Experimenten met magnetische levitatie hebben de deur geopend
voor proteïne kristalgroei in gewichtloosheid in hoge magneetvelden. Als dat mo-
gelijk zou zijn, dan zou het als een alternatief kunnen dienen voor kristalgroei in de
ruimte. Magnetische levitatie van objecten is mogelijk met commercieel verkrijgbare
magneten, maar experimenten met kristalgroei tijdens magnetische levitatie hebben
duidelijk gemaakt dat dit niet de juiste conditie is om convectie te verminderen. De
juiste conditie kan berekend worden door te bepalen hoe de dichtheid en de magnetis-
che susceptibiliteit van de oplossing variëren met concentratie. Het resultaat voor
diamagnetische proteïne oplossingen is een drie maal hoger product van magnetis-
che veldsterkte en gradiënt om convectie te verminderen dan nodig is voor levitatie.
Voor paramagnetische oplossingen is een drie maal kleiner product nodig. De ben-
odigde hoge velden brengen het creëren van een gewichtloosheidachtige omstandigheid
voor het groeien van proteïne kristallen buiten het bereik van de meeste magneten
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laboratoria. Het laboratorium voor hoge magneetvelden van de Radboud Univer-
siteit Nijmegen is echter in het bezit van magneten die deze condities kunnen halen.
Dit biedt de unieke mogelijkheid om de kristalgroei in gewichtloosheid uitvoerig en
nauwkeurig te bestuderen.
De mogelijkheid om magnetische velden te gebruiken om convectie tijdens pro-

teïnekristalgroei te onderzoeken is gedaan met nikkelsulfaat hexahydraat en het pro-
teïne lysozym. Nikkelsulfaat is geen proteïne, maar het is veel makkelijker te kristallis-
eren dan proteïnen en dient als een modelsysteem om de e¤ecten van magnetische
velden op vloeistofdynamica, massatransport en kristalgroei te bestuderen. Ook is
het paramagnetisch, wat betekent dat er geen extreem hoge magneetvelden nodig zijn
om convectie uit te schakelen. Er zijn speciale microscopen gebouwd die in de mag-
neet passen, waarmee zowel een groeiend kristal als vloeistofstromingen en concen-
tratie gradiënten gevisualiseerd kunnen worden. Deze microscopen staan beschreven
in hoofdstuk 2.
In hoofdstuk 3 worden het eerste experimentele voorbeeld getoond van het dempen

van convectie tijdens kristalgroei in magnetische velden. Een nikkelsulfaat kristal is
gegroeid in een magneet terwijl met een speciale schlieren microscoop het verdwijnen
van de convectie is waargenomen, net zoals in de ruimte zou gebeuren. Het gebruik
van magnetische velden biedt echter iets wat kristalgroei in de ruimte niet biedt: de
unieke mogelijkheid om de mate van zwaartekracht aan te passen, en daarmee de
mate van convectie, waardoor zelfs een omgekeerde zwaartekracht mogelijk wordt.
De instelbaarheid van de mate van convectie is verder uitgediept in hoofdstuk 4,

waar de breedte van de depletie zone (een maat voor in hoeverre convectie is ver-
minderd) is gemeten als functie van de e¤ectieve zwaartekracht, door de magnetische
veldsterkte te variëren. Het resultaat komt volledig overeen met wat verwacht wordt
vanuit de theorie. De groeisnelheid van het kristal toont daarbij een zeer duidelijke
afname als convectie is verminderd. Een analyse van het veldpro�el van de gebruikte
magneet toont het belang van het kiezen van de juiste positie in de magneet om inho-
mogeniteiten in de e¤ectieve zwaartekracht te minimaliseren, maar dat het niet nodig
is de zwaartekracht geheel uit te schakelen. Een vermindering van een zwaartekracht
in de buurt van het kristal met een factor duizend is voldoende om convectie groten-
deels te dempen.
De volgende stap was het dempen van convectie tijdens de groei van een kristal

van een diamagnetisch proteïne. Hoewel een uitdaging vanuit een technisch oogpunt
vanwege de hoge magnetische velden die nodig zijn, wordt in hoofdstuk 5 beschreven
dat het mogelijk is om ook convectie te uit te schakelen voor diamagnetische proteï-
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nen. Met een schaduwgra�e-microscoop is het verdwijnen van de convectie zichtbaar
gemaakt tijdens het groeien van een lysozym kristal. Echter, het zeer hoge product
van magnetische veldsterkte en gradiënt benodigd voor het creëren van een toestand
van gewichtloosheid beperkt de mogelijkheden voor het groeien van proteïnekristallen
in een magneet, omdat deze hoge velden slecht enkele uren volgehouden kunnen wor-
den; veel te kort voor een volledig groei experiment. Helaas bleek het dus niet mogelijk
te bepalen of het groeien van een proteïne kristal terwijl convectie is uitgeschakeld
door magnetische velden, leidt tot verbetering van de kristal kwaliteit.
Als kristalgroei plaatsvindt in een afgesloten bakje, dan kan het e¤ect van de wrijv-

ing die de wanden van het bakje op de stromende oplossing tijdens convectie uitoefent
niet worden verwaarloosd. In dat geval kan er een kritische e¤ectieve zwaartekracht
worden gede�nieerd waar beneden convectie is gedempt en massatransport geheel ge-
limiteerd is door di¤usie, terwijl de zwaartekracht niet helemaal is uitgeschakeld. In
hoofdstuk 6 word getoond, door middel van eindige elementen simulaties en een an-
alytisch model, dat de waarde van deze kritische e¤ectieve zwaartekracht voorspeld
kan worden. Dit resultaat kan gebruikt worden om groeiomstandigheden te opti-
maliseren indien gewichtloosheid niet volledig bereikt wordt, zoals in de ruimte, of
niet homogeen, zoals in hoge magneetvelden.
In hoofdstuk 7 worden de eindige elementen simulaties uitgebreid om ze te vergelijken

met de experimenten beschreven in hoofdstukken 3 tot en met 5. Deze simulaties be-
vatten de inhomogene e¤ectieve zwaartekracht die aanwezig was tijdens de magneet
experimenten, waardoor een beter inzicht is verkregen in de resultaten van de exper-
imenten.

Deel 2
Deel 2 van dit proefschrift beschrijft een andere methode om convectie tijdens

kristalgroei te dempen om zo de kristalkwaliteit te verbeteren. In hoofdstuk 8 wordt
een nieuwe methode voorgesteld om alle voordelen van gewichtloosheid voor kristal-
groei te verkrijgen, door gebruik te maken van zwaartekracht in plaats hiervoor te
compenseren. Dit kan door het bakje waarin het kristal groeit om te keren zodat het
kristal aan de bovenkant van het bakje groeit in plaats van op de bodem. Op die
manier kan convectie niet ontstaan. We laten door middel van eindige elementen sim-
ulaties en kristalgroei experimenten met natrium chloraat zien, dat kristalgroei in deze
geometrie leidt tot de formatie van wat we een �Buoyancy Assisted Depletion (BAD)
zone� noemen. De waargenomen e¤ecten hiervan op de groeisnelheid en morfologie
wijzen allemaal op di¤usie gelimiteerde groei, net als in gewichtloosheid. De eenvoud
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van deze groeimethode, die we de BAD methode noemen, biedt de mogelijkheid om
op grote schaal proteïnekristallisatie te verrichten onder omstandigheden die overeen
komen met gewichtloosheid, zonder voor de zwaartekracht te hoeven compenseren.
In hoofdstuk 9 wordt deze methode toegepast op de groei van tetragonale kippe-

eiwit lysozym kristallen op gesilaniseerde mica nucleatiesubstraten. De morfologie
van de gegroeide kristallen wijzen op groei bij lage oververzadigingen veroorzaakt
door de afwezigheid van convectie. De kristalkwaliteit is gecontroleerd door röntgen
di¤ractie. Er is geen e¤ect van de methode op kristalkwaliteit waargenomen, omdat
de kwaliteit van de kristallen, zelfs van de normaal gegroeide, al dusdanig goed is dat
enige verbetering niet detecteerbaar is.

Conclusie en vooruitzichten
De vraag of kristalgroei in terwijl convectie is gedempt met magnetische velden

echt leidt tot kwaliteitsverbetering van de kristallen, kon niet worden beantwoord
omdat de benodigde condities niet lang genoeg vol gehouden konden worden voor een
volledig groei-experiment. Een oplossing hiervoor is het ontwerpen van een magneet
die hoge gradiënt velden aankan voor een langere tijd met voldoende homogeniteit.
Een andere optie is het concentreren op paramagnetische proteïnen, waarvoor veel
lagere velden nodig zijn en bestaande apparatuur gebruikt kan worden. Hoe dan ook,
het gebruik van magnetische gradiënt velden is een veelbelovende techniek voor het
verbeteren van de kwaliteit van proteïnekristallen. Hoewel hier geen bewijs is aange-
toond, zijn alle randvoorwaarden aanwezig die verantwoordelijk gehouden worden
voor de verbetering van de kristalkwaliteit, zoals het dempen van convectie, di¤usie
gelimiteerd massatransport en een afname van de groeisnelheid. Om precies te zijn,
brengt dit deze techniek op dezelfde hoogte als kristal groei in de ruimte! Van grote
toegevoegde waarde is de mogelijkheid om de mate van convectie te variëren door het
magnetisch veld te veranderen. Dit kan ook interessant zijn voor andere onderzoeks-
gebieden in vloeistofdynamica, massa/warmte transport, cavitatie, of ieder ander sys-
teem waar gradiënten in magnetische susceptibiliteit aanwezig zijn. Via magnetische
gradiënt velden is de mate van convectie een nieuw toegankelijke variabele.
Kristalgroei volgens de BAD methode toont veel potentie als alternatief voor

kristalgroei in gewichtloosheid, vanwege zijn eenvoud en compatibiliteit met wijd ge-
bruikte kristallisatie technieken. Echter, meer onderzoek is nodig, bijvoorbeeld naar
een geschikt nucleatiesubstraat en de invloed van de vorm en grootte van de groe-
icontainer op de vorming van de BAD zone. Desalniettemin biedt deze techniek de
mogelijkheid om de vraag of het dempen van convectie en alle daar aan gerelateerde
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e¤ecten echt de kwaliteit van proteïnekristallen kan verbeteren.
Het onderzoek dat is beschreven in dit proefschrift is het resultaat van een samen-

werking tussen fysici, chemici, kristallografen en biologen, waarbij theoretische en
experimentele kennis van kristalgroei, magneet technologie, optica, vloeistofdynam-
ica, kristallogra�e en biochemie is toegepast en ontwikkeld. Het is mijn persoonlijke
mening dat zulk een samenwerking van groot belang is voor het vinden van metho-
den om de kwaliteit van proteïnekristallen te verbeteren (en natuurlijk vele andere
wetenschappelijke vraagstukken). Om dit voor elkaar te krijgen moet eerst worden
afgevraagd wat we precies willen verbeteren, hoe we kristalkwaliteit moeten de�niëren
en welke experimentele technieken, diagnostische methoden en theoretische inzichten
kunnen worden toegepast. Dit zijn vragen die een enkele chemicus, fysicus of bioloog
niet kan beantwoorden. De enige manier om dit te laten slagen, onafhankelijk van
welke techniek uiteindelijk zal worden gebruikt, is door verder samen te werken over
de grenzen van de afzonderlijke disciplines heen.
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